PHYSICAL REVIEW A 98, 013613 (2018)

Time crystals: Analysis of experimental conditions

Krzysztof Giergiel,' Arkadiusz Kosior,! Peter Hannaford,? and Krzysztof Sacha'-3
Unstytut Fizyki imienia Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Profesora Stanistawa Lojasiewicza 11,
PL-30-348 Krakow, Poland
2 Centre for Quantum and Optical Science, Swinburne University of Technology,
Hawthorn, Victoria 3122, Australia
3Mark Kac Complex Systems Research Center, Uniwersytet Jagielloniski, ulica Profesora Stanistawa Lojasiewicza 11,
PL-30-348 Krakow, Poland

® (Received 21 May 2018; published 12 July 2018)

Time crystals are quantum many-body systems which are able to self-organize their motion in a periodic way
in time. Discrete time crystals have been experimentally demonstrated in spin systems. However, the first idea of
spontaneous breaking of discrete time translation symmetry, in ultracold atoms bouncing on an oscillating mirror,
still awaits experimental demonstration. Here, we perform a detailed analysis of the experimental conditions
needed for the realization of such a discrete time crystal. Importantly, the considered system allows for the
realization of dramatic breaking of discrete time translation symmetry where a symmetry broken state evolves
with a period tens of times longer than the driving period. Moreover, atoms bouncing on an oscillating mirror
constitute a suitable system for the realization of dynamical quantum phase transitions in discrete time crystals
and for the demonstration of various nontrivial condensed-matter phenomena in the time domain. We show that
Anderson localization effects, which are typically associated with spatial disorder and exponential localization
of eigenstates of a particle in configuration space, can be observed in the time domain when ultracold atoms are

bouncing on a randomly moving mirror.
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I. INTRODUCTION

Time crystals are quantum many-body systems which due
to interactions between the particles are able to self-organize in
a periodic way in time which is in full analogy to the formation
of space crystals due to mutual interactions between atoms in
condensed-matter physics [1]. Wilczek initiated time crystal
research but his original idea concerning the formation of a
crystalline structure in time turned out to be impossible to
realize because he considered a time-independent system in
the ground state [2—8]. However, soon after, another version
of time crystals was proposed in which a periodically driven
quantum many-body system spontaneously breaks discrete
time translation symmetry of the Hamiltonian and starts evolv-
ing with a period twice as long as the period of the external
driving [9-21]. This kind of quantum self-reorganization of
the motion of quantum many-body systems, called discrete
time crystals, has already been realized experimentally in spin
systems [22-27]. It should be mentioned that in the classical
regime breaking of discrete time translation symmetry in an
atomic system has also been demonstrated in the laboratory
[28,29].

In the present paper we return to the experimental pro-
posal of a discrete time crystal published in 2015 and an-
alyze in detail the conditions for its experimental realiza-
tion. In Ref. [9] it was shown that an ultracold atomic
cloud bouncing on an oscillating atom mirror is able to
spontaneously self-reorganize its motion and to move with
a period twice as long as the mirror oscillation period if
the interactions between atoms are sufficiently strong. The
system itself is suitable for realization not only of sponta-
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neous breaking of discrete time translation symmetry of the
Hamiltonian into a motion with twice as long a period but also
into a motion with any multiple period of the driving. We focus
here on the self-reorganization of the motion of the system with
a period 40 times longer than the period of the driving. Such a
dramatic breaking of discrete time translation symmetry of the
Hamiltonian is not possible to observe in spin systems unless
one deals with a very large spin quantum number.

The formation of a discrete time crystal is related to a
quantum phase transition [9,30]. In order to form a time crystal,
the strength of the interactions between atoms bouncing on a
mirror must be greater than a critical value. It turns out that
when one suddenly changes the interaction strength from the
time crystal regime to the noninteracting regime, a dynamical
quantum phase transition can be observed in the time evolution
of the system [31]. Dynamical quantum phase transitions are
recently discovered analogs of equilibrium phase transitions
where the nonanalytical behavior of a system is observed not
as a function of a control parameter but versus time [32-35].
We analyze the experimental conditions which allow one to
observe that the return probability of the system to the initial
degenerate manifold reveals a cusp at a critical moment of
time after the sudden change from the time crystal phase to the
noninteracting regime.

Ultracold atoms bouncing on an oscillating atom mirror
[36] (for stationary mirror experiments see [37—44]) constitute
a promising system for experimental realization of various
condensed-matter phases in the time domain [1]. If a single- or
many-body system is periodically and resonantly driven and
the resonance is of a high order, such as 40 times longer than
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the driving period, the system behaves like electrons in a space
crystal [45,46]. Importantly, such a crystalline behavior of a
resonantly driven system is observed in the time domain when
the detection is carried out in the laboratory frame. A proper
manipulation of the periodic driving allows one to realize
various solid-state phenomena in the time domain [47]. In
the present paper we focus on Anderson localization in time
[46,48-50] and show that the introduction of randomness in the
motion of the atom mirror leads to the Anderson localization
phenomenon which is observed in the laboratory frame as an
exponential localization versus time of the probability for the
detection of atoms at a fixed position.

The paper is organized as follows. In Sec. II we introduce
the system and provide the theoretical description needed to
analyze the phenomena we are interested in. In Sec. III we
perform a detailed analysis of the experimental conditions
required for the realization of discrete time crystals. The
results of Sec. III also serve as a base for an analysis of the
experimental conditions for realization of dynamical quantum
phase transitions in time crystals, Sec. IV, and Anderson
localization in time, Sec. V. We conclude in Sec. VI.

II. DESCRIPTION OF THE SYSTEM

In this section we introduce the system and its theoretical
description. We begin with a single-particle problem which is
followed by the many-body generalization.

A. Single-particle problem
In the present paper we use the gravitational units where the
length, energy, and time are given by
1/3

h? h
b=\—=) ., Eo=mgl, 1= ; ey
m*g mgly

respectively, with m the atom mass and g the gravitational
acceleration. In the laboratory frame a single atom bouncing
on an oscillating atom mirror is described by the following

Hamiltonian:
2

H= %+z+F[z—f(t)], @)

where F(z) describes the mirror, i.e., the profile of the reflecting
potential, and f(¢) = f(t + T), with
2r
T=— s (3)
10
determines the periodic oscillations of frequency w of the
mirror position. A theoretical description of the system is much
more convenient when we switch from the laboratory frame to
the frame oscillating with the mirror. Then, the mirror is fixed

but the effective gravitational acceleration oscillates in time,
2

H="0tz42f/0+FQ. @)
Except in Sec. V, we focus on the case where
A
f(t)=—ycoswt, y = Pk )

The ratio A/w? determines the amplitude of the harmonic
oscillations of the mirror in the laboratory frame. Assuming
the mirror can be modeled by a hard wall potential located

at z = 0 in the oscillating frame, we may drop the F(z) in
Eq. (4) which leads to the final form of the single-particle
Hamiltonian [51]
2
H) =5 42+ )zcosor, 220, ©6)
The energy of the considered system is not conserved
because the Hamiltonian (6) depends explicitly on time.
However, due to the time periodicity, there are eigenstates of
the so-called Floquet Hamiltonian [51,52],

H=H()—id, (7

which evolve periodically with the period of the driving.
The corresponding eigenvalues are called quasienergies of the
system. The Floquet formalism is in full analogy to the Bloch
theorem approach known in condensed-matter physics. The
aim of the present paper is to analyze experimental conditions
of the Floquet eigenstates of the single-particle system (6) and
its many-body version.

The description of a particle bouncing resonantly on an
oscillating mirror, which we are interested in, can be simplified
by employing the quantum secular approximation [53]. How-
ever, starting with the classical description, which at the end is
quantized, we not only arrive at the same results but also gain
an intuitive picture of the system dynamics.

Let us begin with the classical version of the Hamiltonian
(6) and apply a canonical transformation from the Cartesian po-
sition and momentum to the so-called action-angle variables /
and 0 of the unperturbed Hamiltonian Hy = p2 /2 + z[51,54].
In terms of this new pair of canonically conjugate variables, the
unperturbed Hamiltonian depends on the momentum (action)
only, Hy(I) = (3w 1)*/?/2, and the periodic particle trajectory
can be found immediately. Indeed, the action / = const and the
position of the particle on a periodic orbit is given by an angle
which changes linearly in time, 8(¢) = (1)t + 6(0), where
Q(I) = dHy(1)/dlI is the frequency of the periodic motion of
an unperturbed particle. The distance of the classical turning
point of a particle from the mirror is

h= S5 ®)

In the presence of the mirror oscillations, we are interested in
the motion of a particle in the vicinity of a periodic orbit which
is resonant with the time-dependent driving, i.e., when I ~ I,
where w = sQ(I;) with integer s. The s : 1 resonant motion
can be described by a simple effective Hamiltonian when we
switch to the frame moving along a resonant orbit, defined by

0=0-2 )
S

and perform averaging over time. In the moving frame, ®
and P = I — I are slow variables provided we are close to
a resonant orbit, i.e., provided P =~ 0. Then, averaging the
Hamiltonian (6) over time yields [51,54]
2
Her =~

+ Vpcos(s®), (10)
Meft

where a constant term has been omitted and

772S4
Meff = — s
(1)4

o= S0l an
w
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The Hamiltonian (10) indicates that in the moving frame a
resonantly bouncing atom behaves effectively like a particle
in a periodic lattice, i.e., like an electron in a space crystal
[45,46,55-57]. Importantly, the crystal behavior in the moving
frame will be reproduced in the time domain when we return
to the laboratory frame [46—48,58]. Indeed, the linear relation
(9) between the position ® in the moving frame and the
time ¢ in the laboratory frame ensures that in the quantum
description when we fix the position in the laboratory frame
0 = const, the crystalline behavior in ®, described by the
effective Hamiltonian (10), will be observed in the evolution
of the probability of detection of an atom versus ¢. This simple
argumentation shows that it is not the presence of any external
space periodic potential but the resonant dynamics itself that
is responsible for the emergence of a crystalline behavior.
This also shows that we have a platform for realization of
a broad range of condensed-matter phenomena in the time
domain—as an example we analyze Anderson localization in
time in Sec. V. However, in Secs. III and IV we consider a
different aspect of the system. We show that ultracold atoms
bouncing resonantly on a harmonically oscillating mirror can
reveal spontaneous breaking of the discrete time translation
symmetry of the Hamiltonian if the interaction between atoms
is sufficiently strong and a discrete time crystal phenomenon
forms [9,31].

Before we switch to the description of time crystals we
need to analyze the validity of the approach we use. Classical
equations of motion generated by the Hamiltonian (6) possess
scaling symmetry [51]. It means that when we appropriately
rescale the parameters and the position and momentum, the
equations of motion do not change. This allows us to set one
of the parameters, perform the analysis of the system, and
use the results for other values of the chosen parameter by
applying the scaling transformation. Let us set the resonant
action I; = 1 which implies the resonant driving frequency
w = s(w?/3)"/3 and perform an analysis of the validity of
the effective Hamiltonian (10) for different values of the
perturbation amplitude L. The obtained results will allow us to
predict the resonant behavior for any value of I provided they
are rescaled according to o’ = Is_l/3a), MN=Axp = 11/3
x' =17"x, and t' = I,*t. In Fig. 1 phase space portraits
corresponding to the 40 : 1 resonance (s = 40), A = 0.2 and
A =04 are presented. In the latter case the phase space
possesses a significant chaotic area but in the former case
the phase space is mostly regular and resembles the behavior
predicted by the effective Hamiltonian (10).

In the quantum description the scaling symmetry is broken
because the Planck constant sets a scale in phase space which
can be easily seen from the commutation relation

i
[x.pl= A 12)

. pl=i =
which also indicates that /]! can be treated as an effective
Planck constant. For I; > 1, the quantized version of the
classical effective Hamiltonian (10), i.e., when P — —i-= ao’
provides a perfect quantum description of the resonant be-
havior of the system [51]. As already mentioned the same
quantum results can be obtained by applying the quantum
secular approximation [53].
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FIG. 1. Top panel: phase space portrait generated by the effective
Hamiltonian (10) for A = 0.2. Middle and bottom panels show the
stroboscopic phase space portraits generated by the exact Hamiltonian
(6) for A = 0.2 and A = 0.4, respectively. The frequency of the mirror
oscillations, w = 40(2/3)"3, corresponds to the 40 : 1 resonance
(s = 40) for the resonant value of the action /4o = 1. Note that for the
sake of clarity we show only a quarter of the full 2 range of ®.

Now we can define a simple strategy on how to choose
suitable parameters of the system. If we are interested in
a certain s : 1 resonance behavior, we set I, =1 and w =
s(m?/3)!/3 and perform an analysis of which values of A are
allowed in order to deal with the behavior predicted by the
effective Hamiltonian (10). Then, in order to choose which
value of I is suitable in the quantum case, we have to keep
in mind that the effective Planck constant 7~ ! must be smaller
or at least comparable to the area of a smgle regular elliptic
island (cf. Fig. 1), otherwise no quantum state is localized (in
a semiclassical sense) in an island and the picture of a particle
moving like an electron in a space crystal is lost. Having
determined /; and employing the scaling transformation we
obtain the desired ' = I, *s(72/3)!/3 and A" = A.

Eigenstates of the effective Hamiltonian (10) obtained in the
moving frame correspond to the Floquet states of the original
Floquet Hamiltonian (7). For s > 1 the eigenstates of (10) are
Bloch waves [47]. If we are interested in the first energy band
of (10) only, the effective description can be further simplified.
That is, expanding the wave function of the quantum version
of (10) in the basis of Wannier states w;(®) localized in each
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site of the effective periodic potential in (10) and belonging
to the first energy band, ¥ (®) = Zf;l a;w;(®), we obtain an
expression for the particle energy in the tight-binding form [59]

J = .,
Ex =3 ;(ai+lai +c.c.), (13)

where J = —2(w;;1|Heg|w;) is the amplitude of tunneling
of an atom between neighboring Wannier states. Note that
the Wannier states are represented in the laboratory frame by
localized wave packets evolving periodically along the s : 1
resonant orbit with a period s times longer than the mirror
oscillation period T'.

B. Many-body problem

The interaction between atoms couples different degrees of
freedom and we may not consider different degrees of freedom
independently without justification.

We assume that a cloud of ultracold atoms is bouncing on the
oscillating atom mirror in the presence of a transverse harmonic
potential characterized by the frequency w, . The many-body
Hamiltonian of our system, in the second quantization formal-
ism and in the gravitational units (1), reads [60]

2 2 2 2
H = /d3r @T[% +z+4+ Azcoswt + w
+%\iﬁ®}®, (14)

where W(r,r) is the bosonic field operator and the contact
interaction between atoms is described by the coefficient gy =
4may, with a; being the atomic s-wave scattering length given
in the gravitational units (1). If the transverse confinement is
sufficiently strong (see the analysis in Sec. III A), ultracold
atoms do not populate excited states along the transverse
directions and we may restrict to the ground state ¢ (x,y) of the
harmonic oscillator trap of frequency w, . That is, substituting
U(r,t) = qﬁo(x,y)l/}(z,t) in (14) and integrating over x and y
we arrive at the one-dimensional version of the many-body
Hamiltonian [60]

. 00 R p2 gD 214 | »
H = / dz 1//T|:? +z+ Azcoswt + 7¢T1ﬂ:|\[f, (15)
0
where a constant term has been omitted and

W]
gIp = go-— = 2w_ay, (16)
2

with the scattering length a; given in the gravitational
units (1).

The Hamiltonian (15) is the many-body counterpart of the
single-particle Hamiltonian (6). Similarly, as in the single-
particle case, the energy is not conserved but there exist
many-body Floquet eigenstates which evolve periodically with
the period of the mirror oscillations, 7. We will focus on
quantum states related to the classical s : 1 resonant dynamics.
For sufficiently strong interaction, the corresponding many-
body Floquet eigenstates become extremely vulnerable to any
perturbation because they form macroscopic superpositions
(Schrodinger cat-like states) and even an infinitesimally weak
perturbation, for example, measurement of the position of

a single atom, is sufficient to cause the collapse of the
Schrodinger cat states into one of the states which forms
the macroscopic superposition. In the s : 1 resonant case this
means that the discrete time translation symmetry of the
Hamiltonian is spontaneously broken into another discrete
time translation symmetry [9]. In other words, the Floquet
eigenstates, which must obey the symmetry of the Hamilto-
nian, evolve with the period of the mirror oscillations 7 but
the system spontaneously chooses symmetry broken states
which evolve with a period s times longer. This phenomenon
is dubbed discrete time crystal formation because a quantum
many-body system, due to interaction between the particles,
spontaneously self-reorganizes its motion and starts evolving
with a period different from the period expected from the
symmetry of the Hamiltonian [9-11]. It is in analogy to space
crystal formation where atoms, due to mutual interactions,
spontaneously form a periodic arrangement in space which
breaks the continuous space translation symmetry of the solid
state Hamiltonians. In the 2 : 1 resonant case (s = 2), a full
many-body analysis was possible and even simulations of
the spontaneous symmetry breaking process in the course
of the measurements of the position of the particles could
be performed [9]. Here, we are interested in s >> 1 and the
full many-body calculations are not attainable. Therefore, in
order to describe experimentally relevant conditions we are
going to apply the mean-field approach where the spontaneous
time translation symmetry breaking is indicated by the loss of
stability of the mean-field solutions which evolve with period
T and the emergence of stable solutions evolving with period
s T. The mean-field approach is valid provided that the number
of atoms depleted from a Bose-Einstein condensate is much
smaller than the total number of particles. Itis true in the regime
where no spontaneous breaking of time translation symmetry
occurs and deep in the discrete time crystal regime where
symmetry broken states are Bose-Einstein condensates [9,30].

The simplest way to switch from the full many-body
description to the mean-field approach is to exchange the
bosonic field operator @(z,t) with a classical field ¥ (z,1).
Then, the Hamiltonian (15) becomes the energy functional of
a Bose-Einstein condensate with ¥(z,¢) being the condensate
wave function. We are looking for periodic solutions of the
periodically driven system within the mean-field approach,
and therefore we introduce the energy functional related to
the Floquet Hamiltonian [46]

1 sT 00 p2
E=— dtf dz ¥*| — 4+ z + Az cos wt
sT 0 0 2

N
g“; w2 —ia,]w, a7

where N stands for the total number of atoms and we assume
that fooo dz|¥(z,1)]*> = 1. The energy (17) can be considered
as the energy of the system per particle averaged over time.
Anticipating the emergence of stable solutions with period
sT we have introduced averaging over a time period s times
longer than the driving period T'. Solving the Gross-Pitaevskii
equation (GPE) [60] corresponding to (17),

+

2
[% + 2z + Azcoswt + gipN|Y(z,0)]* — i81:|1// = u,

(18)
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we can obtain condensate wave functions which evolve peri-
odically in time.

In the absence of particle interactions, the single-particle
Floquet eigenstates, related to the classical s : 1 resonant
dynamics, form an s-dimensional Hilbert subspace and are
superpositions of s localized wave packets w;(z,#) which
evolve along the classical s : 1 resonant orbit. Despite the fact
that the wave packets w;(z,t) propagate with period sT, the
Floquet eigenstates are periodic with period 7' because after
each period of the mirror oscillations the w;(z,t)’s exchange
their positions. The wave packets w;(z,t) are Wannier states
corresponding to the first energy band of the effective Hamil-
tonian (10). Restricting to the s-dimentional Hilbert subspace
we can expand solutions of the GPE in the Wannier-like basis,
V(z,t) =Y ;_, a;w;(z,1), and obtain the energy functional
(17) within the tight-binding approximation [cf. Eq. (13)],

J =, 1<
Ex—3 ;(aiﬂai +ee)t s > UglailPla;l?. - (19)

i,j=1
where
2 sT 00 p2
J = -7 ), dt/0 dz w;kﬂ[?—i—z—i—)»zcosa)t - i3,i|w,-,
(20)
ngN sT [ee]
Ui ==~ f dt f dz|w; ", @
sT 0 0
20N sT 00
U, = 8 f dz/ dz|w; Plw;|?, for i#j. (22)
sT 0 0

Note that the amplitude J is related to the tunneling of
atoms between the wave packets that are neighbors on the
classical trajectory. The tight-binding approximation (19) is
valid provided the interaction energy per particle is much
smaller than the energy gap between the first and the second
energy bands of the effective Hamiltonian (10) [59].

We have completed all the necessary theoretical tools to
analyze the conditions for experimental realization of various
time crystal phenomena.

III. DISCRETE TIME CRYSTALS

The formation of space crystals is related to the spontaneous
breaking of continuous space translation symmetry. Hamilto-
nians of solid-state systems do not change if all particles are
translated by an arbitrary vector. This symmetry implies that
if the systems are prepared in eigenstates, the probability for
detection of a single particle must be uniform in space and
no crystalline structures are visible. However, exact symmet-
ric ground states of condensed-matter systems are strongly
vulnerable to a perturbation and even measurement of the
position of one particle is sufficient to uncover a crystalline
structure in space due to localization of the center of mass of
the system. Such a space crystal lives infinitely long if we deal
with a macroscopic system because quantum spreading of the
center of mass lasts so long that it is not measurable [1].

The Wilczek idea that the same phenomenon can be ob-
served in the time domain if certain quantum many-body sys-
tems are prepared in ground states turned out to be impossible
[1]. However, spontaneous breaking of time translation sym-

metry is possible if one relaxes the requirement and considers
excited eigenstates of quantum many-body systems. The so-
called discrete time crystals are related to periodically driven
systems which spontaneously break discrete time translation
symmetries of Hamiltonians and self-reorganize their motion
and start evolving with a period different from the period of
the driving. The first idea of a discrete time crystal was based
on ultracold atoms bouncing on an oscillating atom mirror [9].
In the present section we are going to analyze the experimental
conditions for realization of this system.

In the original version of the discrete time crystal the
2 : 1 resonant dynamics of ultracold atoms bouncing on an
oscillating mirror was considered [9]. From an experimental
point of view, in order to reduce atomic losses, it is better
to work with a higher resonance. We have chosen the 40 : 1
resonance. Discrete time crystal formation in this case means
that the system spontaneously self-reorganizes its motion and
starts evolving with a period 40 times longer than the period
expected from the symmetry of the Hamiltonian. We will first
focus on the theoretical considerations and then switch to
analysis of the experimental conditions.

A. Theoretical analysis

A quantum many-body description shows that for suffi-
ciently strong attractive interactions between the ultracold
atoms, low-lying energy states in the Hilbert subspace related
to the classical 2 : 1 resonant dynamics possess Schrodinger
cat-like structures and the measurement of the position of a
particle in the system prepared in one of them breaks discrete
time translation symmetry and a discrete time crystal forms
[9]. This phenomenon can also be described by means of
the mean-field theory which indicates a loss of the stability
of the condensate wave function propagating with the period
of the mirror oscillation 7 and the emergence of new stable
solutions evolving with the period 2T [9]. We apply the latter
approach to the 40 : 1 resonance case.

The simplest way to identify the critical strength of the
interactions between atoms that leads to the breaking of
discrete time translation symmetry is to analyze the lowest
energy solution of the energy functional in the tight-binding
approximation (19). From the classical analysis presented in
Fig. 1 we know that for s = 40 the exact phase portrait is
reproduced by the prediction of the effective Hamiltonian
(10) for A = 0.2. Having determined A we need to choose
the frequency of the mirror oscillation w or equivalently the
resonant action I4g = I;—4. The latter determines an effective
Planck constant I,;" which has to be smaller than the area of
one of the elliptical resonant islands visible in Fig. 1. From an
experimental point of view we need to ensure that the tunneling
time of atoms between the elliptical islands, 2.4/J, is much
shorter than the lifetime of a Bose-Einstein condensate in the
laboratory. On the other hand, we cannot afford J to be too large
because then the energy gap between the first and the second
energy bands of the effective single-particle Hamiltonian (10)
is very small and when we turn on the particle interactions the
simple picture of the time crystal formation, described by the
single band tight-binding model (19), is lost. A compromise
is to choose w such that the energy gap is at least of the order
of 10J. Simple diagonalization of the single-particle effective
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0 10 20 30 40
1

FIG. 2. Lowest energy solutions corresponding to the mean-field
energy functional within the tight-binding approximation (19) for
interaction strengths g;pN = —0.12 (black filled circles), —0.01
(red open circles), and —0.003 (green open squares). For gipN 2
—1.64 x 1073 the symmetry is not broken and the lowest energy
solutions are uniform.

Hamiltonian (10) shows that for @ = 4.9 (i.e., I = 1790) the
energy gap equals 9.5, where J = 8.6 x 1074,

Having chosen the parameters of the single-particle problem
we can now analyze what strength of the attractive interactions
is needed to break the symmetry and which value is suitable
for an experiment. For g;p = 0, the energy (19) is minimized
by the uniform solution, ¢; = 1/ /40, which corresponds to
a wave function ¥ (z,t) that evolves with the period 7. For
gipN < —1.64 x 1073 the uniform solution becomes unstable
and new degenerate stable solutions are born which evolve
with the period 407. For |g;pN| greater than the critical
value but close to it, the lowest energy solution is slightly
nonuniform and it could be difficult to prepare and detect it
experimentally. Therefore, it is much better to increase |g;p V|
so that the symmetry broken solutions are localized in single
sites of the tight-binding problem (19). In Fig. 2 we present the
solutions for different interaction strengths. The value of about
gipN = —0.12 results in the symmetry broken solutions being
nearly entirely localized in single sites which correspond to the
interaction energy per particle |U;;|/2 = 3.8J. The latter is 2.5
times smaller than the energy gap between the first and second
energy bands which guarantees the validity of the tight-binding
approximation.

In three-dimensional space a Bose gas can collapse if the
attractive contact interactions are sufficiently strong [61-65].
In order to prevent such a bosenova effect a transverse trap has
to be present and the number of atoms cannot be too large.
We have already assumed that in the transverse directions the
condensate wave function ¢y(x,y) corresponds to the ground
state of the harmonic trap of frequency w,. We will see
that a discrete time crystal is represented by a wave packet
¥ (z,t) evolving along a classical trajectory whose probability
distribution reveals the smallest standard deviation at the
classical turning point, which we denote by o. The system will
be stable against collapse if the resulting interaction energy
per particle at the turning point, goN [ d3r|gov|*, is smaller
than the excitation energy along the transverse directions, @, ,
which leads to the following condition [61]:

o 2 |as|N. (23)

The present subsection has allowed us to determine the optimal
parameters for the formation of a discrete time crystal on the

basis of the 40 : 1 resonant dynamics. In the next subsection
we analyze the experimental conditions and perform time-
dependent numerical simulations of the realization of the
discrete time crystal by integrating the full GPE (18), i.e.,
without referring to the tight-binding approximation.

B. Experimental conditions

A suitable atomic system for performing a discrete time
crystal experiment based on ultracold atoms bouncing on
an oscillating mirror is the Rb |F = 2,my = —2) state,
which has a broad Feshbach resonance that allows precise
tuning of the s-wave scattering length and hence the inter-
particle interaction [66]. Using gravitational units for 5°Rb,
lp = 0.385 um, and 7y = 0.198 ms, we obtain the following
values for the parameters determined in the previous subsec-
tion: mirror oscillation frequency w/(27ty) = 3.94 kHz and
amplitude y/yp = 3.2 nm, distance of the classical turning point
from the mirror hly = 127 um, and standard deviation of the
atomic density along the longitudinal direction at the classical
turning point olyp = 0.77 um. The maximal allowed number
of atoms is N < o/|ag|, which for a;ly = —0.1 nm (—2ay)
yields N < 8000. The desired interaction strength, g;pN =
2wia;N = —0.12, can be achieved by a proper choice of
w,,ag,and Nje.g.,a;lo = —0.1 nm, w, /(27ty) = 37 Hz, and
N = 5000. These parameters are considered to be realistic for
an experiment.

In the original proposal of a discrete time crystal based on
ultracold atoms bouncing on an oscillating mirror [9], we con-
sidered the simple case of a 2 : 1 resonance in which the initial
state was a single Floquet state consisting of a superposition of
s = 2 wave packets. In order to keep the required number of
bounces to areasonable number to reduce possible atom losses,
it is better to work with a higher resonance, such as the 40 : 1
resonance. However, it is difficult to prepare a single Floquet
state for the 40 : 1 resonance because it is a superposition of
40 localized wave packets moving with different velocities
and with certain mutual phase relations. On the other hand,
it is relatively easy to prepare a single localized wave packet
that moves periodically along the 40 : 1 resonant orbit and to
monitor the evolution of the wave packet with and without the
attractive interactions.

The experiment starts with the ground state of a BEC of
8Rb atoms in a three-dimensional harmonic optical dipole
trap whose center is located at the classical turning point.
The frequencies of the (pancake shape) trap are w, /(27 ty) =
37 Hz and w;/(27ty) = 100 Hz along the transverse and lon-
gitudinal directions, respectively. The value of the longitudinal
trap frequency ensures that the standard deviation of the
ground-state distribution along the longitudinal direction at the
classical turning point is oy = 0.77 pum.

Once the initial state of the system is prepared, we turn
off the trapping potential along the longitudinal direction and
the atom cloud starts falling on the oscillating atom mirror
under the influence of gravity and the tightly confining one-
dimensional red-detuned optical waveguide. The frequency
of the mirror oscillations is adjusted to the frequency of the
classical 40 : 1 resonant orbit which depends on the initial
distance of the cloud from the mirror. The initial phase of the
mirror oscillation corresponds to + = 0 in Eq. (5) and hence
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FIG. 3. Demonstration of the discrete time crystal formation; see also Fig. 4. Initially an atomic cloud is prepared in a trap above a
periodically oscillating mirror. The parameters of the trap are chosen so that the longitudinal width of the atomic distribution |1 (z,0)|? fits the
width of the Wannier wave packet |w,(z,0)|? located at the classical turning point. When the longitudinal trapping potential is turned off, atoms
fall on the mirror and their time evolution is described by the full GPE (18). In the absence of interactions, atoms tunnel slowly to neighboring
Wannier wave packets which is indicated by a decrease of the overlap between the time evolving wave function and the initially chosen
Wannier state |(w;(¢)|¥(¢))|* [see blue curve in (a)]—at t/ T = 2210 all atoms tunnel out from the initially chosen Wannier wave packet and
[(wi (D) ())|*> = 0. However, when the attractive interactions are turned on (g;p N = —0.12), the system chooses a periodic solution evolving
with a period 40 times longer than the period expected from the symmetry of the Hamiltonian and the discrete time translation symmetry
is broken. This situation is presented in (a) by the red curve where the interaction strength gpN = —0.12. In panels (b)—(d) the densities
of interacting (noninteracting) atoms are presented with the red (blue) curves at different moments of time—we have chosen time moments
when the atomic clouds are midway between the mirror location (z = 0) and the classical turning point (z = 329). Panel (b) corresponds to
t/T = 1330 when in the noninteracting case the initial and neighboring Wannier wave packets are equally populated. Panel (c) is related to
the time moment ¢/ 7 = 2210 when all noninteracting atoms tunnel out of the initial Wannier wave packet while panel (d) corresponds to
t/T = 5010. During the entire evolution the wave function of the interacting system does not decay, demonstrating the stability of the discrete

time crystal—see red curves in (b)—(d).

the mirror needs to be in the lowest position with zero velocity.
Both adjustments can be carried out by tuning the driving of
the mirror.

We now analyze the above optimal parameters for the case
ofthe40 : 1resonance. InFigs. 3 and 4 we present the evolution
of the atomic cloud, both in the presence of the desired
attractive interactions (g;p/N = —0.12) and in the absence
of the interactions. Without the interactions, atoms prepared
in the localized wave packet tunnel slowly to neighboring
localized wave packets which move on the 40 : 1 resonant
classical trajectory, as indicated by the overlap between the
time evolving wave function and the initially chosen Wannier
state |(w; ()| ¥ (1))|? [Fig. 3(a), blue line]. After t/T = 2210
mirror periods (i.e., after 55 bounces of the atom cloud on the
mirror) no atoms remain in the initial wave packet [Figs. 3(c),
blue line, and Fig. 4(b), green line] because all the atoms
have tunneled to neighboring wave packets. In the presence of
sufficiently strong attractive interactions the initial Gaussian
wave packet does not decay—it evolves freely along the
classical trajectory with a period 40 times longer than the
mirror oscillation period for long times without tunneling
losses to other wave packets [Fig. 3, red lines and Fig. 4(a)].

The 3°Rb BEC is prepared by setting the s-wave scattering
length to a,ly &~ 300ay; by means of the broad Feshbach
resonance at the magnetic field 155.041(18) G [66] and sym-
pathetically cooling with a 8’Rb BEC in an optical dipole trap
[67]. Once the BEC is reached, the evaporative cooling can
be continued which allows one to reduce the thermal cloud
and to obtain the desired number of atoms in the trap. The
atom mirror is a blue-detuned repulsive light sheet created by
focusing 532 nm light, e.g., from a 10-W frequency-doubled
Nd : YVOq laser, with a cylindrical lens [41]. The bouncing
atoms are confined in a single transverse mode of the tightly
confining red-detuned optical waveguide. Such an atom mirror
can be modulated with the required frequency of ~4 kHz
and amplitude of ~3 nm by vibrating a beam-guiding optical
mirror with a piezocrystal, by modulating the beam with
an AOM or by modulating the optical potential. A similar
light-sheet atom mirror has previously been used to bounce
a BEC of ¥Rb atoms dropped from heights of ~100 zm by
Bongs et al. [41], who demonstrated the coherent evolution of
the bouncing BEC. For the 40 : 1 resonance and the above
parameters, about 55 bounces, or about 0.6 s, are required
without significant loss of atoms or loss of phase coherence to
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FIG. 4. Experimental signatures of the formation of the discrete
time crystal. A periodically driven quantum many-body system, due
to the interactions between particles, does not follow the driving force
but spontaneously chooses motion with a period 40 times longer than
the period of the driving. This is illustrated in panel (a) where we
plot the densities of the atomic cloud around ¢/7T = 2210, i.e., at
t/T = 2200 (red), 2210 (green), and 2220 (blue) for gipN = —0.12.
The time crystal behavior is in contrast to the evolution of the system
without interactions. Panel (b) shows that without interactions the
evolution of the initially localized wave packet is not stable because
atoms have tunneled to other localized wave packets moving along
the classical resonant orbit. The filled-in blue regions between z = 0
and z = 100 are interference fringes related to the reflection of the
wave packets from the mirror. In both panels the same initial state,
described in Fig. 3, has been chosen.

allow time for the atoms to tunnel to neighboring wave packets
in the absence of interactions.

The evolution of the atom density of the bouncing **Rb
atoms is monitored when the s-wave scattering length is
adiabatically changed from ~2300qy to the following:

(i) zero, to turn off the interactions to allow the atoms to
start to tunnel to other wave packets in times of order 1/J. To
control the scattering length to £0.1a, requires the magnetic
field to be stable to about +£2 mG;

(1) asly = —2ay, corresponding to an attractive interaction
gipN = —0.12 for N = 5000. This is sufficiently strong to
break the time-translation symmetry to form a discrete time
crystal which evolves freely with period 407" for long times
without tunneling to other wave packets. The stability of the
discrete time crystal can be tested by introducing controlled
fluctuations of the mirror amplitude.

We now consider the influence of possible experimental
imperfections:

(1) Precise control of the total number of atoms N, the
s-wave scattering length a;, and the transverse confinement
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FIG. 5. Similar data to that presented in Fig. 3 in the interact-
ing case (g;pN = —0.12); however, the initial atomic distribution
[¥(z,0)|? is displaced along the longitudinal direction with respect to
the classical turning point by 4+0.50 (red curves) and —0.50 (blue
curves), where o is the standard deviation of the probability density
| (z.0)|>. Panel (a) shows the corresponding |{(w, (t)|y(¢))|> while
panel (b) presents |/ (z,1)|?> at t/T = 9990.

frequency w, is not important because all of these parameters
influence the value of g;p/N only. For example, when gip N
is changed by 10%, the results presented in Fig. 3(a) do not
change.

(2) Precise control of the frequency w of the initial
longitudinal trapping potential is also not essential. When the
width of the initial atomic distribution along the longitudinal
direction is changed by 10% with respect to the optimal value,
the results shown in Fig. 3(a) do not change.

(3) Precise location of the initial atomic distribution at
the desired classical turning point is not important because
deviations can be corrected by an appropriate adjustment of
the frequency of the mirror oscillations. The important factor is
the stability of the location of the atom distribution in different
realizations of the experiment. In Fig. 5 we show the results
when the initial distribution is displaced with respect to the
optimal position by 0.5 times its standard deviation, i.e., by
0.50lp = 0.38 um. There is a drop of the squared overlap
by only a few percent. Thus, in different realizations of the
experiment the allowed deviations of the location of the initial
distribution with respect to the mirror position are of the order
of 0.50.

IV. DYNAMICAL QUANTUM PHASE TRANSITION

In equilibrium statistical physics phase transitions are indi-
cated by anonanalytical behavior of the macroscopic quantities
as a function of a control parameter [68,69]. It turns out that
a similar nonanalytical behavior can also be observed as a
function of time in the nonequilibrium dynamics of many-body
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systems which is induced by a quantum quench, i.e., a sudden
change of a control parameter across a critical value [32,35].
Such a dynamical quantum phase transition is indicated by a
nonanalyticity of the return probability of a system to the initial
state at a certain critical moment of time if the thermodynamic
limit is considered. This phenomenon can be interpreted as
the partial loss of information on the system evolution—when
we observe a system from the point of view of the initial
state there is a breakdown of the short-time expansion at a
critical moment of time. While dynamical quantum phase
transitions have been analyzed mostly in time-independent
systems, recently a similar behavior has been predicted in a
periodically driven system which reveals discrete time crystal
formation [31]. Here, we analyze the experimental signatures
of a dynamical quantum phase transition for ultracold atoms
bouncing on a periodically oscillating mirror after a quantum
quench from the time crystal phase to a weakly interacting
regime.

A quantum many-body description of ultracold bosons
bouncing resonantly on an oscillating mirror can be reduced
to a Bose-Hubbard Hamiltonian. That is, when we restrict
to the Hilbert subspace spanned by Fock states |ny, ... ,ny),
where n; denotes the number of bosons occupying a Wannier-
like wave packet w;(z,t) evolving along the s : 1 resonant
orbit, we end up with a many-body Bose-Hubbard Hamil-
tonian similar to Eq. (19) but with the complex numbers
a; replaced by the standard bosonic annihilation operators
a;. If the attractive interactions between bosons are suffi-
ciently strong, the low-lying energy eigenstates of the Bose-
Hubbard Hamiltonian are Schrodinger cat-like states. For
example, the ground state |W) can be approximated by a
macroscopic superposition (|N,0,...,0) +|0,N,0,...,0) +
<+« +10,...,0,N))//s. For s = 2 it was shown that starting
with |W) and performing a quench to a weakly interacting
regime, the so-called Loschmidt echo L£(t) = [{(E O @0))?,
where |W (1)) and |¥(t)) evolve according to the Hamiltonians
before and after the quench, respectively, reveals a cusp at a
critical moment of time 7. [31]. In an experiment it is extremely
difficult to prepare a Schrédinger cat state because the system
spontaneously chooses a symmetry broken state and a discrete
time crystal forms, which has been analyzed in Sec. III. How-
ever, the signature of the dynamical quantum phase transition
can still be observed experimentally even if we prepare initially
a discrete time crystal state, e.g., |[¥) = |®) = |N,0,...,0),
where all bosons occupy a single Wannier-like wave packet
w)(z,t), and after the quench we perform measurements of the
return probability of the system to the lowest energy manifold.
Indeed, in the limit when N — oo, the return probability to
the degenerate ground-state manifold of the Bose-Hubbard
Hamiltonian reproduces the Loschmidt echo [31,35], i.e.,

Loy=Y pi)y=Yy e ™0, (24)
i=1 i=1

where p;(t) = |(~d>,‘(t)|‘~f-’(t))|2 is the probability of finding the
evolving state |W(#)) in a time crystal state |®;(7)) where N
bosons occupy a Wannier-like wave packet w;(z,t). In (24) we

have introduced the so-called rates A;(¢) which are intensive

quantities and read

1
Ai(r) = —Nlnpi(t)- (25)

In the thermodynamic limit, the Loschmidt echo is determined
by the smallest rate at a given moment of time ¢,

L(t) oc e Nrmin(®) (26)

where Apin(f) = min{1(¢), ...,As(¢)} [35]. A nonanalytical
behavior of L£(¢) corresponds to a time moment when initially
the smallest rate A;(¢) has increased so much that it becomes
greater than another rate A ;(¢). Then, the minimal rate Amin(?)
reveals a cusp which corresponds to a cusp of the Loschmidt
echo L(t); see Fig. 6(a). Experimentally, it is very difficult
to measure directly the Loschmidt echo because L£(¢) drops
exponentially with N. However, the rates themselves can be
measured and the dynamical quantum phase transition can be
observed in the laboratory [33,34].

The experiment demonstrating a dynamical quantum phase
transition in a discrete time crystal can be performed with the
parameters determined in Sec. III. Initially, for the interaction
strength g;p N = —0.12, one prepares a discrete time crystal
state |W(¢)) ~ |®(¢)) which evolves with a period s = 40
times longer than the mirror oscillation period T'; see Figs. 3
and 4. At a certain moment of time 7, the interactions are
instantly turned off (g;p = 0) and the system starts evolving
according to a new Hamiltonian. We are interested in the rates
(25) where p;(t) are the probabilities of finding the evolving
state |¥(¢)) in the different time crystal states |®;(¢)). Due
to the fact that the initial state and the time crystal states
|®;(¢)) are Bose-Einstein condensates where macroscopic
numbers of atoms occupy Wannier-like wave packets w;(z,1),
the entire experiment can be described by the GPE (18). The
projections of the solution ¥(z,¢) of the GPE on the Wannier-
like wave packets allows us to calculate the probabilities
pi(t) = [(w; (O] @))|*N and consequently the rates A;(1) =
— In |{(w; (£)|¥(1))|. In an experiment, the rates can be obtained
by measuring atomic densities. Indeed, by determining the
fractions of the total number of atoms which form a given
localized wave packet we obtain estimates for |(w; (t)|(¢))|>.
This is illustrated in Fig. 6 where we present the rates A;(¢)
obtained by fitting a sum of Gaussian distributions to the atomic
densities. The crossing point of the smallest rates corresponds
to the critical time 7. when the return probability of the system
(24) reveals a cusp indicating the dynamical quantum phase
transition.

V. ANDERSON LOCALIZATION IN TIME

In this section we still analyze ultracold atoms bouncing
on an oscillating mirror but we do not consider spontaneous
breaking of time translation symmetry and formation of dis-
crete time crystals.

In Sec. II we showed that atoms bouncing resonantly on
the mirror behave like electrons in a space crystal and such
a crystalline behavior is observed in the time domain. In this
section we show that when we introduce disorder in the driving,
Anderson localization phenomena known in condensed-matter
physics can be realized in time.
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FIG. 6. Dynamical quantum phase transition in a discrete time
crystal. Initially, ultracold atoms are prepared in a harmonic trap above
an oscillating mirror and at t = O the longitudinal trapping potential
is turned off and atoms fall on the mirror and form a discrete time
crystal, i.e., they break the time translation symmetry and evolve with
a period s = 40 longer than 7. At time ¢/(s7) = 28 the interactions
between atoms are turned off and the system evolves according to a
different Hamiltonian and the time crystal decays. Panel (a) shows the
evolution of the smallest three rates A;(z), sampled with the period
sT = 40T, obtained by fitting a sum of Gaussian distributions to
the atomic densities—each Gaussian represents a Wannier-like wave
packet |w;(z,1)|?. Black symbols correspond to the overlap of v (z,t)
with the initial Wannier-like wave packet w(z,t), while red crosses
and green squares correspond to the overlap with the two neighboring
Wannier functions. Blue solid line is related to the minimal rate
Amin(7). The crosses and squares are not identical because the state
prepared initially in the trap is not a perfect Wannier function w, (z,1).
An example of the result of the fitting is presented in panel (b),
where we have chosen ¢ close to the critical time #./(sT) = 59, i.e.,
at the moment of time when initially the smallest rate approaches
two other rates corresponding to the projection of ¥(z,f) on two
neighboring Wannier-like wave packets. In panel (b) the solid black
line corresponds to |/ (z,#)|? and the dashed red line to the fitted sum
of the Gaussian distributions.

Anderson localization is a well-known phenomenon which
takes place in configuration space and relies on an exponential
localization of eigenstates of a particle [70,71]. When a time-
independent spatially periodic potential is contaminated by
a spatially disordered contribution, extended Bloch waves
turn into exponentially localized eigenstates due to destructive
interference between different multiple-scattering paths. The
localization of eigenstates is accompanied by the inhibition of
transport in a disordered system. Anderson localization has
also been studied in disordered systems with fast periodic
time modulations [72—74]. Actually, the presence of a spatially

periodic potential is not necessary. Indeed, even without a
crystalline structure in space, the presence of a disordered
potential characterized by a finite correlation length results in
the localization of a particle in configuration space. Anderson
localization can also be observed in momentum space and it
is related to the quantum suppression of classical diffusion
of classically chaotic systems [75-77]. Yet another kind of
Anderson localization has recently been proposed: localization
in the time domain due to the presence of disorder in time
[46,48-50].

In this section we show that noninteracting ultracold atoms
bouncing on an atom mirror can reveal Anderson localization
in time if the mirror performs random motion. Experimental
signatures of the localization are related to an exponential lo-
calization, around a certain moment of time, of the probability
for the detection of atoms at a fixed position on a resonant
periodic orbit [46].

We begin with an atom bouncing on a harmonically os-
cillating mirror where we assume that the s : 1 resonance
condition is fulfilled. For s >> 1, the eigenstates of the effective
single-particle Hamiltonian (10) are Bloch waves which in the
laboratory frame appear as trains of localized Wannier-like
wave packets, w;(z,t), moving periodically along a classical
resonant orbit. When we restrict to the first energy band of
the effective Hamiltonian (10), the energy of an atom can be
described by the tight-binding model (13).

Let us assume that the motion of the mirror is not perfectly
harmonic because we turn on a fluctuating perturbation. That
is, the mirror motion is no longer described by Eq. (5) but by

J@)= f(t+sT)
Vi N~ itkonss o
= —ycoswt — —— e/t - (27)
25 kzz—s
k#0
where T =2n/w and the phases ¢ = —@_; are chosen

randomly from the uniform distribution in the interval [0,27].
The first part of f(¢) is responsible for the crystalline structure
described by (10) while the other part is the fluctuating
perturbation whose strength is characterized by V;. For the
parameters chosen in Sec. III, the first part corresponds to
the main driving with frequency w/(2nty) = 3.94 kHz and
the perturbation part consists of its s = 40 subharmonics. The
presence of the perturbation results in additional terms in the
effective Hamiltonian (10) which currently reads

2 N
Va i(k®
Hejt ~ + Vpcos(s®) + —— ¢! K0T (28)
T 2mep V/2s k:Z_
k#0
with meg = —2s*/w* and Vy = y(—1)*+L. If we restrict to

the first energy band we obtain the tight-binding model

J s N
E ~ 5 Z(a,‘*ﬂai +c.c)+ ;Gimiﬁ (29)

i=l1

where €; = (sT)™! OST dt fooo dzzf"(t)|w;|*. Employing the
central limit theorem it can be shown that the randomness
of the phases ¢; implies that the ¢; are random numbers
corresponding to a normal distribution with standard deviation
V. The tight-binding model (29) is actually a one-dimensional
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FIG. 7. Anderson localization in the time domain in the presence
of crystalline structure in time. Panel (a) shows the initial atomic
density (green curve) and the densities averaged over 50 realizations of
the random motion of the mirror, see Eq. (27), at long evolution times,
i.e., t =2210T (blue curve) and ¢t = 50107 (red curve). Panel (b)
presents the Anderson localization in the time domain, i.e., the average
probability densities for the detection of atoms at z = 1 vs time. Green,
blue, and red curves correspond to the results presented in panel (a),
i.e., to the probability of the detection of atoms around t =0, t =
22107, and t = 50107, respectively. Once the Anderson localization
freezes the spreading of the wave packet, the probability density for
the detection of atoms at z = 1 does not change its shape and it is
repeated with period s7 due to the periodic boundary conditions in
time—the presented results correspond to s = 40.

Anderson model and for s — co Anderson localization takes
place regardless of how small V, is. In the case when s =
40, which we are interested in, localization can be observed
provided eigenstates localize on a number of neighboring
Wannier-like wave packets smaller than 40. For the param-
eters described in Sec. III, the amplitude of the harmonic
oscillations of the mirror is yly = 3.2 nm, which results
in J =8.6x 107, and in order to analyze the Anderson
localization we choose V; =5.1J, which corresponds to
Valp = 1.7 nm.

The experimental realization of Anderson localization in
time can start with precisely the same initial state as considered
in Secs. Il and IV, i.e., with ultracold atoms trapped above the
mirror. However, in the present case the interactions between
atoms have to be turned off and the mirror performs the motion
described by (27). The initial state is a superposition of the
exponentially localized eigenstates described by (28) and in
the course of time evolution it does not spread over the entire
resonant periodic orbit but tends to a localized periodically
evolving probability distribution [78-80]. We have performed
numerical integration of the full Schrodinger equation of an
atom bouncing on a harmonically oscillating mirror and in
the presence of random fluctuations; see (27). In Fig. 7(a) we
show the density of atoms in configuration space averaged
over 50 different realizations of the disordered motion of the
mirror at ¢+ = 22107 and ¢+ = 50107 . The results indicate that
after sufficiently long evolution the atomic density freezes
its shape—it essentially stops spreading already at time ¢
of the order of 10007. This behavior is in contrast to the
evolution without the mirror fluctuations (V; = 0) presented
in Figs. 3 and 4(b) where tunneling of atoms does not stop

and atoms tend to spread along the entire classical resonant
orbit.

Anderson localization in the time domain is illustrated
in Fig. 7(b) where the average probability density for the
detection of atoms at z =1 is shown as a function of
time. Once the atomic distribution stops spreading, the lo-
calization of the probability density around a certain mo-
ment of time is observed and it is repeated with the
period sT due to the periodic boundary conditions in
time.

The experimental setup considered in this subsection can
also be used for realization of many-body localization where
interactions between particles and strong disorder result in
the absence of thermalization of a system, vanishing of dc
transport, and logarithmic growth of the entanglement entropy
[8§1-88]. This phenomenon can be observed in the time
domain when together with the presence of the fluctuating
atom mirror, repulsive interactions between atoms are turned
on [58].

VI. SUMMARY AND CONCLUSIONS

In the present paper we have considered various aspects of
crystalline behavior in time of ultracold atoms bouncing on an
oscillating atom mirror and performed a detailed analysis of the
realistic experimental conditions needed for their realization.
Experiments with cold and ultracold atoms bouncing on a
mirror have already been carried out [36—44]. Such a system
turns out to be a promising platform for realization of time
crystals.

We began with considerations of the formation of discrete
time crystals [9-21]. Discrete time crystals have already been
demonstrated in the laboratory with the help of spin systems
[22-27]. Atoms bouncing on a mirror are able to reveal a
dramatic breaking of discrete time translation symmetry of
the system Hamiltonian where the symmetry broken states
evolve with periods tens of times longer than the driving
period. Such discrete time crystals cannot be realized in
spin systems unless the spin quantum numbers are very
large. We identified experimentally realistic conditions and
performed numerical simulations of the formation of a discrete
time crystal. We also performed an analysis of the influ-
ence of experimental imperfections on the realization of the
phenomenon.

Quantum many-body systems which form discrete time
crystals can reveal a dynamical quantum phase transition
after suddenly turning off the interactions between particles
[31]. We demonstrated that ultracold atoms bouncing on an
oscillating mirror are also a suitable system for realization
of such a nonanalytical behavior in time. Indeed, we showed
that measurements of atomic densities after a quantum quench
(i.e., after a sudden turn-off of the interactions) allow one to
obtain the return probability of the system to the initial time
crystal manifold which reveals nonanalytical behavior around
a critical moment of time.

Atoms resonantly bouncing on a mirror are also a promis-
ing system for realization of various condensed-matter phe-
nomena in the time domain [1,47]. We focused on Ander-
son localization and showed that when the mirror fluctu-
ates in time, the randomness in the driving of the atoms
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results in Anderson localization of the system in the time
domain [46,48-50]. The latter phenomenon corresponds to
an exponential localization in time of the probability for
the detection of atoms at a fixed position in configuration
space. Analysis of the considered system showed that the
observation of Anderson localization in time is attainable
experimentally.
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