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Recently, quantum corrections to optical conductivity of disordered metals up to the UV region
were observed. Although this increase of conductivity with frequency, also called anti-Drude be-
haviour, should disappear at the electron collision frequency, such transition has never been observed
or described theoretically. Thus, the knowledge of optical conductivity in a wide frequency range
is of great interest. It is well known that the extrapolation of complex conductivity is ill-posed - a
solution of the analytic continuation problem is not unique for data with finite accuracy. However,
we show that assuming physically appropriate properties of the searched function σ(ω), such as:
symmetry, smoothness, and asymptotic solution for low and high frequencies, one can significantly
restrict the set of solutions. We present a simple numerical method utilizing the radial basis function
approximation and simulated annealing, which reasonably extrapolates the optical conductivity from
visible frequency range down to far infrared and up to ultraviolet region. Extrapolation obtained on
MoC and NbN thin films was checked by transmission measurement across a wide frequency range.

I. INTRODUCTION

Optical properties of thin films, especially supercon-
ducting metals are nowadays of great interest. Knowl-
edge of electric response is essential for the rapidly ex-
panding field of superconducting devices e.g. photon
detectors,1 as well as for purely academic purposes due
to presence of phenomena like weak localization. There-
fore, this class of materials attracts much investigation
nowadays.2–4 Measurement of optical properties in a
broad frequency range is often demanding and the ex-
perimental window of devices is naturally limited. In
such a case, the data are fitted by causally paired model
functions to extrapolate the complex conductivity σ(ω).
Unfortunately, there is no easily implementable model for
the quantum corrections to high frequency conductivity,5

which are significant in disordered metals. Nevertheless,
the Kramers-Kronig relations can be utilized to a certain
degree to extrapolate the complex response function from
the experimental window to a larger frequency interval.6

We present a model-independent determination of
σ(ω) extending the experimental window of spectroscopic
ellipsometry, making use of DC-sheet resistance mea-
sured at finite temperature T .

II. METHOD DESCRIPTION

Let a set of complex values {σ′e(ωei ) + iσ′′e (ωei )} be the
complex conductivity at discrete frequencies ωei from in-
terval [ωemin, ω

e
max] as well as at zero frequency, σ′e(0) =

σdc, measured at finite temperature T . We start with
discretization of the ω - axis. Taking into account that
the error of analytical continuation of experimental data
measured with finite precision increases exponentially
with distance from the known interval,7 we use a log-
arithmic scale. This also helps to avoid problems with
splining square-root and logarithmic singularities with
polynomial functions. We introduce a new discrete vari-

able xi with values

xi =0, 1, ...

...k,
1

a
ln(~ωe0/kBT ),

1

a
ln(~ωe1/kBT ), ...

...,
1

a
ln(~ωeN/kBT ), l, l + 1, ..., n,

(1)

where number of points k below experimental window
is set by parameter a = ln(~ωe0/kBT )/(k + 1) and l is
the lowest integer greater than ln(~ωemax/kBT ). The dis-
cretization is obtained simply by

ωi =
kBT

~
ea·xi . (2)

An example of such procedure is shown in Fig. 1, where
the exponential spacing of red points ωi is interrupted by
the experimental values (blue points) at ωe. Values of the
real part of conductivity at the frequencies ωi are denoted
by yi, i.e. yi = σ′(ωi) and they will become the fitting
parameters to be optimized. The integer n determining
the number of fitted points can be estimated as the index
of a reasonably high value of ωn, where the conductivity
can be safely fixed to zero since σ(ω →∞) −→ 0, whereas
the contributions from high energy transition, being far
enough from the studied region, are included in param-
eter ε∞ introduced later on. According to Fermi liquid
theory, finite temperature can be taken into account by
the transformation

ω 7→ Ω =
√
ω2 + γ(T )2, (3)

where γ(T ) is of the same order of magnitude as kBT/~,
often taken as γ(T ) = πkBT/~ (e.g. Eq. 6.7 in Ref. 5).
Equation (3) implies that for ω � γ(T ) the conductivity
σ′(ω) is constant and equals to σdc = σ′(γ(T )). Thus
a smooth function y = f{yi}(x) can be constructed by
a cubic spline using the Radial Basis Function (RBF)
method8 with two boundary conditions, y0 = σdc and
yn = 0. The spline proceeds in the logarithmic scale,

ar
X

iv
:2

00
9.

12
24

9v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  2
5 

Se
p 

20
20



2

where the distribution of centres xi given by equation
(1) is equidistant which is optimal for RBF method.9

From known trial function f , the complex conductivity
is calculated as σ′{yi}(ω) = f{yi}(x(ω)) and σ′′{yi}(ω) =

H[σ′{yi}(ω)]. Here, H[σ′{yi}(ω)] is the Hilbert transform

of σ′{yi}(ω). The curve f{yi}(x) is found as the best fit

of its Hilbert transform σ′′{yi}(ω) to experimental set of

points σ′′e (ωei ) by least-squares method, minimizing the
functional

F [σ′{yi}(ω)] =
∑

ωej

(
σ′′e (ωej )− σ′′{yi}(ω

e
j )]
)2

+
∑

ωej

(
σ′e(ω

e
j )− σ′{yi}(ω

e
j )
)2

.

(4)

This approach leads to the following key observation:
Suppose, for a moment, that the values of σ′e(ω

e
i ) and

σ′′e (ωei ) were not obtained by measurement, but they were
generated by restriction of the domain of a dimensionless
model function g′(ω) and its Hilbert image g′′(ω), i.e.
σ′e(ω

e
i ) = σ0g

′(ωei ) and σ′′e (ωei ) = σ0g
′′(ωei ). It means,

that the solution corresponding to the input data σ′e(ω
e
i )

and σ′′e (ωei ) is already known (the whole function g′(ω)).
It is clear that the spline of finite number of points
f{yi}(x) can not perfectly recover the function, even if
yi = σ0g

′(ωi). Slight differences yield small but non-zero
values of the functional (4), denoted by F0. However, ap-
plying the corresponding optimization method, one can
find curves with even lower value of functional (4), while
these curves are significantly different from g′(ω).

This is interpreted as a practical consequence of an ill-
posed nature of the problem and in order to regularize
it, we add the assumption that the searched function is
slowly varying. This can be confirmed by the fact that
the relaxation rate Γ in highly disordered metals has a
large value and therefore, their conductivity varies on
large scales.4 Utilization of this requirement is based on
the following idea: For the sake of simplicity, let g′(ω) be
the Lorentzian

g′(ω) =
1

1 + (ω/Γ)2
(5)

shown in Fig. 1 as red dashed line. The choice of in-
put data σ′e(ω

e
i ) and the discretization of the problem

are depicted in Fig. 1 as blue and red dots, respectively.
Let us investigate different solutions with the value of
functional (4) less or equal to the F0. Such solutions
have the following property: for example if the red point
at ω11 is lifted and the red point at ω12 lowered, or
vice versa, the deviation of the imaginary conductivity
from the Drude one, shown in inset of Fig. 1, changes
only very slightly and can even decrease the deviation
caused by the spline error. Thus, solutions oscillating
around the curve with the least structure can be averaged
out in a sufficiently large ensemble of generated curves.
The curves with energy (4) lower than F0 can be found
utilizing the simulated annealing technique by repeated
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FIG. 1: Reconstruction of Drude complex conductivity by
the described method from precisely known values shown as
blue points. The real part of Drude conductivity is shown
by green dashed line together with three curves which have
considerably different values yi (red points) at higher frequen-
cies. Inset shows the deviation ∆σ′′/σ0 = H[σ′{yi}]/σ0 − g′′
of the imaginary part of conductivity calculated from these
curves by Hilbert transform, from Drude one. The devia-
tion is surprisingly larger for pink curve which has all the red
points lying on the real part of Drude conductivity than for
the brown and orange curves oscillating around it. The values
of the functional (4) for pink curve is F0 = 1.2× 10−5σ2

0 and
for the orange and brown curves is 2.0 × 10−7σ2

0 . Neverthe-
less, the average of brown and orange curves is very close to
the Drude one.

melting of the system. We suggest inverse logarithmic
temperature decay and rather small step in the form of
n-dimensional Gaussian random variable, recommended
for continuous optimization.10 Optimized parameters are
forced to be non-negative and the upper bound is chosen
high enough to include the shape of an expected solution
but not too high to make optimization time-consuming.
Points in the measured interval, i.e. values yi = σ′(ωi)
where ωi ∈ [ωemin, ω

e
max] are optimized within intervals

[σ′e(ω
e
i )−χ, σ′e(ωei ) +χ], where χ is the noise level of the

data.

The generated curves σ′{yi}(ω) which satisfy

F(σ′{yi}(ω)) ≤ F0 are used to compute the aver-

aged curve σ′(ω) = σ′{yi}(ω). Although the Hilbert

transformation is linear, the averaged curve σ′(ω) gives
a slightly higher value of the functional F . Therefore
we search a curve varying similarly as σ′(ω) while
minimizing the functional (4). Such a multi-objective
optimization is performed by the linear scalarization,11
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i.e. minimizing functional:

F̃λ[σ′
{yi}

(ω)] = F [σ′
{yi}

(ω)] + λ

ωn∫

ω0

(
d2σ′(ω)

dω2 − d
2σ′(ω)

dω2

)2

dω,

(6)
where ω0 and ωn are the first and the last point of the
spline defined by equation (2). The parameter λ is not a
priori known and must be carefully chosen for the partic-
ular problem. One can start with a high value of λ, such
that λ � F/I, where I is the integral in (6), estimated
with arbitrarily chosen curve from the ensemble. The
found solution is very similar to σ′(ω) and with a simi-
lar value of the first error functional (4). One can lower
the value of λ further until the error (4) is lower then
F0. In real data analysis, the precision limit F0 is set by
the measurement error in such a way, that the accepted
curve lies within the estimated measurement error.

III. NUMERICAL RESULTS

The extrapolation range and accuracy of the described
procedure, i. e. finding reasonable complex conductivity
curves to extrapolate the experimental curves with re-
spect to Kramers-Kronig relations, naturally depends on
the degree of complexity of the extrapolated functions.
Thus, to demonstrate the feasibility of this method, we
tested the extrapolation on sets of data created from two
functions, which qualitatively describe the real part of
the optical conductivity of MoC and NbN thin films, re-
spectively. The conductivity of the former is modelled by
a simple function motivated by Ref. 4, which contains the
observed square-root quantum corrections to the optical
conductivity of these films:

g1(ω, T ) = e−Ω2/Γ2
1 +Q(

√
Ω/Γ1 − 1)e−4Ω2/Γ2

1 . (7)

Here, Ω is defined by equation (3), Γ1 is the scattering
rate and the quantumness Q characterizes the strength of
the square-root corrections, which are significant up to a
certain crossover frequency, chosen to be half of the scat-
tering rate. This function is shown as a red dashed line
in square-root-scale in top plot of Fig. 2(a) for Q = 0.66.
The input data - depicted as blue dots - were obtained
by sampling the above function (7) at 20 regularly placed
frequencies. Points of the discretization are depicted as
red dots. Next, to test the extrapolation of a slightly
more complex function, we study a model function with
two peaks motivated by Refs. 3,4

g2(ω, T ) =
1

1 + (Ω/Γ2,1)2
+Q(

√
Ω/Γ2,1 − 1)e−4Ω2/Γ2

2,1

+
r2

1 + ((Ω− Ω2)/Γ2,2)2
,

(8)
where Γ2,1/2 is the cut-off for quantum corrections and
r2 is the peak height ratio. The searched function (8) is
shown in top plot of Fig. 2(b) as the red dashed line, the
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FIG. 2: (a) Top: Red dashed line is a Gaussian model of
optical conductivity with square-root quantum corrections
(MoC). Blue points laying on the curve are input data for
the extrapolation. Silver lines are curves from the ensemble.
Black line is a normalized averaged curve σ′(ω) = σ′{yi}(ω).
The final curve is green. Bottom: Histogram showing occu-
pancy of deviations around the searched function by curves
from ensemble and deviation of final curve shown as green
line. (b) Top: Red dashed line is the optical conductivity as
a sum of two Lorentzians with square-root quantum correc-
tions (NbN). Blue points are input data, ensemble curves are
silver, the average curve is black and the final curve is green.
Bottom: histogram of deviation of curves from ensemble and
deviation of final green line.
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input data are blue dots and the optimized points are red.
A few curves from the averaged ensemble are also shown
as silver lines. The average curves are depicted as black
lines and the final conductivity is green. As shown in
section (IV), function (8) based on Drude-Lorentz model3

qualitatively describes the measured conductivity of our
NbN films, which indicates the presence of two peaks in
optical conductivity.

The results presented in Fig. 2 show the usability of
the procedure. For the g1(ω) curve, there is good agree-
ment of final green curve with the original curve (7)
at both higher and lower frequencies. The deviation
∆σ′ = g1 − σ′yi shown in bottom plot of Fig. 2(a) is
below 5%. Shown is also a histogram generated by en-
semble of found curves. The conductivity model g2(ω)
is more complex, therefore the function (8) is accurately
reconstructed in the vicinity of the extrapolated region,
whereas further from this region the deviation increases.
The deviation of final curve from searched function (8)
shown in bottom plot of Fig. 2(a) reaches 20% and vari-
ance of curves is also larger than for simpler model (7).
This is visible at higher frequencies in the slightly under-
estimated second peak’s height, whereas at low frequen-
cies, the function is recovered with lower deviation.

IV. EXTRAPOLATION OF EXPERIMENTAL
DATA

The procedure was applied to extrapolate the con-
ductivity of disordered thin films as shown in Fig. 3(a)
for MoC and Fig. 3(b) for NbN, respectively. For the
details of sample preparation, see supplementary in-
formation and Refs. 4,12. Complex conductivity was
determined from spectroscopic ellipsometry and DC-
conductivity was measured by the Van der Pauw method.
The contribution of interband transitions at higher ener-
gies must be taken into account in the imaginary part of
the conductivity. Following the KK relations, the con-
tribution from the bound electrons can be expressed as
σ′′bound = −ε0(ε∞ − 1)ω, where ε0 is the permittivity of
vacuum and ε∞ is the bound-electron contribution to
the static dielectric constant. For MoC, the value of ε∞
was estimated as 1.4 in Ref. 4 and for NbN we calcu-
lated ε∞ = 2.6 utilizing the same procedure, while sim-
ilar value was estimated in Ref. 3. Subsequently, the
corresponding contribution to the imaginary part of the
conductivity σ′′bound was subtracted from measured data.
For MoC conductivity, the extrapolation fits between two
theoretical curves, a Lorentzian (red) and a Gaussian
(pink), proposed in Ref. 4. Taking γ(T ) in the form
πkBT/~ (same as in Ref. 4), the inverse transformation
given by the equation (3) allows to compare the extrap-
olation (dotted lines) with the terahertz-frequency real
part of conductivity (light blue thick lines) obtained from
the temperature dependent DC transport measurement.
The agreement for MoC is very good, especially taking
into account the large distance between optical frequen-
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FIG. 3: Real (solid green line) and imaginary (dashed green
line) parts of the result of extrapolation applied to the normal-
ized complex sheet conductance g = g′ + ig′′ = (σ′ + iσ′′)dZ0

obtained from spectroscopic ellipsometry (blue data) for MoC
(a) and NbN (b) thin films with thicknesses d = 5 nm and
3.5 nm, respectively, measured at room temperature. All
found complex conductivities with functional (4) ≤ F0 are
shown as silver (real part) and gold lines (imaginary part).
Since Eq. (3) implies g′(ω = 0, T ) = g′(ω = πkBT, 0), the
real part of complex conductivity at zero temperature (dotted
line) obtained from extrapolation procedure can be compared
to temperature-dependent DC transport measurement shown
as light blue thick lines. Plot (a) also shows two theoretical
curves, a Lorentzian (red) and a Gaussian (pink), proposed
in Ref. 4.

cies (500 THz) and the frequency (πkT/h ≈ 50 THz)
relevant for transport measurements. The agreement
for NbN is less satisfying. However, even for this more
complicated conductivity spectra the extrapolation can
match the transport measurements reasonably.

In order to verify the extrapolation procedure experi-
mentally, the real part of conductivity determined from
the extrapolation of ellipsometric data was compared
to the conductivity calculated from the transmission of
MoC and NbN films (see Supplementary material) di-
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rectly measured in a much wider frequency range ac-
cessible by our spectrometer, as shown in Fig. 4. The
mismatch in the NbN’s transmission above 5.0 eV could
be caused by interdiffusion between sapphire and NbN.
The transmission of sapphire is nearly frequency indepen-
dent between 0.3-5.0 eV (inset in Fig. 4 (b)), but above
5.0 eV, the transmission strongly depends on impurities
in the sapphire.13 To verify the reliability of transmis-
sion data above 5.0 eV, we used them to compute the
real part of conductivity, taking the imaginary part from
ellipsometry results for the same sample, and used both
as the basis for extrapolating a complex conductivity
curve, plotting its real part (Figure 4). Such extrapo-
lation failed if the entire transmission dataset (6.2 eV)
was used, indicating that such conductivity violates the
Kramers-Kronig relations. By the bisection method, we
found the cut-off for which the transmission data still
process into valid complex conductivity to be 5.4 eV (dot-
ted line, brown); if a data set with cut-off at 5.0 eV was
used, the real part of the generated conductivity (orange)
matches that produced from ellipsometry alone (green).

V. CONCLUSION

A numerical procedure of extrapolating the complex
conductivity of disordered metals based on the Kramers-
Kronig relations can be implemented if the requirement
of slow variation of the conductivity on an energy scale
. Γ is met. A slow variation of σ(ω) is reasonably satis-
fied in highly disordered metals where experimental data
do not indicate rapid changes in the conductivity and
the described method offers robust and reliable extrap-
olation procedure of the measured optical conductivity.
The range and precision of the extrapolation depend on
the complexity of the function. For the simple single-
peak model of conductivity, which is the case of MoC
thin films, even the DC transport measurements can be
reconstructed from the optical measurements, despite the
presence of strong quantum corrections. For the more
complex, double-peaked conductivity model, which is the
case of NbN films, the reliability range of the extrapola-
tion is decreased. However, the extrapolation still rea-
sonably matches the DC measurements and predicts the
second peak.

VI. SUPPLEMENTARY MATERIAL

A. Optical properties calculation

Both the ellipsometry data and the extrapolated con-
ductivity were used to obtain the optical properties of our
thin films. The real and imaginary part of the complex
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FIG. 4: Green curves are extrapolations of normalized sheet
conductance for MoC (a) and NbN (b) obtained from spec-
troscopic ellipsometry data (blue points) (the same as in
Fig. 3) and the experimental values obtained from transport
(light blue) and transmission (red) measurements. In plot (b)
brown and orange curves are extrapolations of data obtained
from transmission measurement with upper cut-off 5.4 eV and
5.0 eV, respectively. The value 5.4 eV of the energy cut-off
(dotted line) is the largest, where the extrapolation can be
done. The highest value of the cut-off energy, where the in-
fluence of the substrate can be neglected, is 5.0 eV. The rapid
change in the black curve above 5.0 eV is probably due to the
influence of the substrate, whose transmission changes rapidly
above this value, as shown in the inset. Data are shown in
linear scale.

refractive index are defined in Ref. 14 as

n(ω) =

√
1

2
(<{εR(ω)}+ |εR(ω)|)

k(ω) = sgn(ω)

√
1

2
(−<{εR(ω)}+ |εR(ω)|),

(9)

where εR is the (complex) relative permittivity given by
εR(ω) = 1 + iσ(ω)/ωε0.

The transmission Tvfs of a thin film with the complex
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refractive index ñ(ω) = n(ω)+ik(ω), placed upon a semi-
infinite substrate with index ñs = ns, i.e. vacuum-film-
substrate, whose imaginary part is neglected is15

Tvfs =
∣∣∣ 2

(1 + ñs)cosφ− i(ñs + ñ2)φ0
sinφ
φ

e−iφ0

∣∣∣
2

. (10)

Here φ = ñωc d and φ0 = ω
c d are phase shifts in the

film and in vacuum of thicknesses d, respectively. The
transmission Tvfsv through a system with finite substrate
thickness is

Tvsfv =
TvfsTsv

1−RvfsRsv
, (11)

where Tsv = 4ns/(1 + ns)
2 is the transmission of the

substrate-vacuum interface and the reflection R is ob-
tained from corresponding transmission simply by 1−T .
Next, the transmission of the vacuum-substrate-vacuum
system is

Tvsv =
T 2
sv

1−R2
sv

. (12)

Finally, the equations (11) and (12) are used to express
the transmission of the system vacuum-film-substrate-
vacuum normalized to the transmission of the substrate
itself as

Tvfsv
Tvsv

=
Tvfs
Tsv

1−R2
vs

1−RvfsRsv
, (13)

which was also a measured quantity. The right-hand side
of equation (13) is a function of complex conductivity
marked as Tn(σ′, σ′′) and can be utilized to calculate
one of it‘s parts, real or imaginary, from another part
and from normalized transmission. Instead of inverting
equations (9) - (13) one can simply minimize difference
between Tn(σ′, σ′′) and measured Tvfsv/Tvsv, namely

σ′ = arg min
(

(Tn(σ′, σ′′)− Tvfsv/Tvsv)2
)
, (14)

what is, in fact, plotted in Fig. 4 as red symbols.

B. Sample preparation

The MoC thin film was prepared by means of reac-
tive magnetron deposition from a Mo target in argon-
acetylene atmosphere (both gases used of purity 5.0) on
c-cut sapphire wafer heated to 200 degrees Celsius. The
flow rates of argon and acetylene were set by flow me-
ters. During deposition, the magnetron current was held
constant at 200 mA, corresponding to a deposition rate
≈ 11 nm/min. The deposition time, and thus the thick-
ness, was regulated by means of a programmable shutter
control interface with a precision of 1 s. The chamber
was evacuated to approximately 5×10−5 Pa. For details
on the preparation of the MoC films and their character-
ization see Ref. 16. The sheet resistance of the studied
MoC sample with a nominal thickness d = 5 nm was
R� = 720Ω.

The thin NbN film was prepared by the pulsed laser
ablation from the Nb-target (purity 99.99 %) in the at-
mosphere of N2 with added 1 % H2 (purity of the gas
mixture is 5.0). The NbN thin film was deposited on
the c-cut sapphire wafer, heated to the 600◦C. The used
laser fluency of KrF laser of 4.9 Jcm2 corresponded to
the deposition rate of 2.4 nm/min. The vacuum cham-
ber was evacuated to the 2 · 106 Pa before deposition.
For more details of the preparation of NbN film and its
growing features see.12
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