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Abstract—We use optical images of a superfluid consisting of a weakly interacting Bose–Einstein condensate
of sodium atoms to investigate the structure of quantized three-dimensional vortex filaments. We find that
the measured optical contrast and the width of the vortex core quantitatively agree with the predictions of the
Gross–Pitaevskii equation.
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1. INTRODUCTION
The Gross–Pitaevskii (GP) equation was inde-

pendently derived by L.P. Pitaevskii [1] and
E.P. Gross [2] in 1961. It describes a superfluid gas of
weakly interacting bosons at zero temperature. The
solution of the equation is a complex function Ψ =
|Ψ|expiϕ, whose modulus squared represents the parti-
cle density, n = |Ψ|2, and the gradient of the phase gives
the local velocity of the f luid, v = ( /m)∇ϕ, where m
is the particle mass. In the derivation by
L.P. Pitaevskii, the GP equation emerges as a general-
ization of Bogoliubov’s theory [3] to a spatially inho-
mogeneous superfluid2 [4]. A quantized vortex can
exist as a stationary solution of the GP equation where
all particles circulate with the same angular momen-
tum  around a line where the density vanishes; the
solution has the form expiϕ, where now ϕ is the
angle around the vortex axis and r is the distance from
the axis in cylindrical coordinates. The density n(r) is
a smooth function which increases from 0 to a con-
stant asymptotic value n0 over a length scale character-
ized by ξ, known as the healing length, determined by
n0 and the strength of the interaction.

Quantized vortices have been extensively studied in
superfluid 4He [5], which is a strongly correlated liq-

uid. The core of the vortex in 4He is only qualitatively
captured by the GP equation and more refined theo-
ries are needed to account for the atom-atom interac-
tions and many-body effects [6–10]. A direct compar-
ison between theory and experiment for the structure
of the vortex core is not available, and is likely unreal-
istic, the main reason being that the core size in 4He is
expected to be of the same order as the atom size. The
only way to observe such a vortex thus consists of look-
ing at its effects on the motion of impurities that may
be attached to it. Electrons [11–14], solid hydrogen
particles [15–19], and  excimer molecules [20]
have been used for this purpose. These impurities act
as tracers for the position of vortex filaments in order
to infer their motion on a macroscopic scale, but the
fine structure of the core remains inaccessible. Fur-
thermore, impurities may themselves affect the
dynamics of the vortex filaments [21].

In dilute ultracold atomic gases the situation is more
favorable. On the one hand, the GP theory furnishes a
very accurate description of the system in regimes of
temperature and diluteness that are attainable in typical
experiments with trapped Bose–Einstein condensates
(BECs) [22, 23]. On the other hand, beginning with a
series of seminal experiments [24–30], quantized vorti-
ces are routinely produced and observed with different
techniques (see [31] for a review).

Despite such an abundance of work, it may sound
surprising that no detailed quantitative comparison
between theory and experiment for the structure of the
vortex core in three-dimensional (3D) condensates

1 The article is published in the original.
2 Notice that an equation of the same form was derived in [4],

within a phenomenological theory for superfluids close to the
normal-superfluid phase transition; the meaning of the coeffi-
cients is however entirely different.
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has yet been performed. A reason is that the healing
length ξ in typical trapped BECs, though much larger
than in liquid 4He, is still smaller than the optical res-
olution, which is limited by the wavelength of the laser
beams used for imaging. Another reason is that, when
illuminating the atomic cloud with light, the result is
the optical density, which is determined by an integral
of the density along the imaging axis (column den-
sity); thus, a vortex filament has a strong contrast only
if it is rectilinear and aligned along the imaging axis.
One can overcome the first limitation by switching off
the confining potential, letting the condensate freely
expand. The vortex core expands as well, at least as fast
as the condensate radius [32–35], so that it can become
visible after a reasonable expansion time. Concerning
vortex alignment, one can strongly confine a BEC
along one spatial direction, squeezing it to within a
width of several ξ. In such a geometry, vortices orient
themselves along the short direction, thus behaving as
point-like topological defects in a quasi-2D system
rather than filaments in a 3D fluid (a recent discussion
about the structure of the vortex core in expanding
quasi-2D condensates can be found in [36]). Con-
versely, if the condensate width is significantly larger
than ξ in all directions, the vortex filaments can easily
bend [37–40], with a consequent reduction of their vis-
ibility in the column density. Bent vortex filaments have
indeed been observed in [41–44]. Bending and optical
resolution particularly limit the quality of comparisons
between theory and experiment for the structure of the
vortex core (see Fig. 14.10 in [23]).

In this work, we show that 3D vortex filaments can
be optically observed with enough accuracy to permit a
direct comparison with the predictions of the GP the-
ory. In our experiment, we produce large condensates
of sodium atoms in an elongated axially symmetric har-
monic trap and we image each condensate, in both the
axial and a transverse direction, after free expansion.
When a vortex filament is present, it produces a visible
modification of the column density distribution of the
atoms. We use numerical GP simulations, as well as
scaling laws which are valid for the expansion of large
condensates, to make direct comparisons with our
experimental observations and find good agreement.

2. EXPERIMENT

We produce ultracold samples of sodium atoms in
the internal state |3S1/2, F = 1, mF = –1〉 in a cigar-
shaped harmonic magnetic trap with trap frequencies
ωx/2π = 9.3 Hz and ω⊥/2π = 93 Hz. The thermal gas
is cooled via forced evaporative cooling and pure
BECs of typically around 107 atoms are finally
obtained with negligible thermal component. The
evaporation ramp in the vicinity of the BEC phase
transition is performed at different rates: slow
quenches eventually produce condensates which are
almost in their ground state, while faster quenches
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lead to the formation of quantized vortices in the con-
densate as a result of the Kibble–Zurek mechanism
[45, 46]. The quench rate can be chosen in such a way
to obtain condensates with one vortex on average.

The trapped condensate has a radial width on the
order of 30 μm and an axial width that is 10 times
larger. The healing length in the center of the conden-
sate is about 0.2 μm, smaller than the optical resolu-
tion. It is also about two orders of magnitude smaller
than the radial width of the condensate, which means
that, as far as the density distribution is concerned, a
vortex is a thin filament living in a 3D superfluid back-
ground with smoothly varying density, and the local
properties of the vortex core are hence almost unaf-
fected by boundary conditions. However, boundaries
are still important for the superfluid velocity field. In
fact, the ellipsoidal shape of the condensate causes a
preferential alignment of the vortex filament along a
(randomly chosen) radial direction so as to minimize
its energy. Moreover, this geometry makes the f low
around the vortex line anisotropic, meaning that on
the larger scale of the entire condensate a vortex
behaves as an almost planar localized object. For this
reason, such vortices in elongated condensates are also
known as solitonic-vortices [44, 47–49]. For our pur-
poses, such localization is an advantage since it sig-
nificantly reduces the bending of the vortex filaments,
while at the same time keeping their local core struc-
ture three dimensional.

Observations are performed by releasing the atoms
from the trap and taking simultaneous absorption
images of the full atomic distribution along the radial
and axial directions after a sufficiently long expansion
in free space, so that the vortex core becomes larger
than the imaging resolution [44, 46]. The presence of
a levitating magnetic field gradient makes it possible to
achieve long expansion times preventing the BEC
from falling. Typical images are shown in Fig. 1. In the
radial direction (Fig. 1a), the vortex is seen as a dark
stripe. This soliton-like character is due to the interfer-
ence of the two halves (ends) of the elongated conden-
sate which, on the large length scale of the entire con-
densate, have approximately a π phase difference [44,
49, 50]. If a vortex filament is parallel to the imaging
direction, the dark stripe exhibits a central dip, corre-
sponding to the vortex core seen along its axis, and a
twist due to the anisotropic quantized circulation. The
2π phase winding around the vortex core was also
detected in the same setup [44] by means of an inter-
ferometric technique based on a sequence of Bragg
pulses. In the axial direction (Fig. 1b), the soliton-like
character is integrated out and the vortex filament is
only a faint (and almost invisible) perturbation in the
column density. However, by subtracting the back-
ground represented by a condensate without any vor-
tex, the filament clearly emerges in the residual den-
sity distribution (Fig. 1c). In the following, we show
how this signal can be used to extract quantitative
information on the vortex structure after expansion,
YSICS  Vol. 127  No. 5  2018
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Fig. 1. (Color online) Experimental absorption images of a condensate with 7 × 106 atoms after 120 ms of free expansion. The
small blue ellipse at the center of (a) represents the shape of the trapped condensate before the expansion, which is an elongated
ellipsoid with the long axis in the x-direction. The expansion is faster in the transverse direction, so that the aspect ratio is inverted
and the atomic distribution a quires a pancake shape. (a) Column density along a transverse direction. The faint vertical stripe is
a signature of the presence of a vortex, and its shape is an interference pattern originating from the anisotropic velocity field
around the vortex and the velocity field of the expansion. The field of view is 1.3 × 3 mm2. (b) Column density along the axial
direction. The vortex is almost invisible. The field of view is 3 × 3 mm2. (c) Residual column density. From the previous image
we subtract spurious interference fringes, due to imperfections in the optical imaging, and the background density, using a
Thomas–Fermi fit (see text). The result is an image of the residual column density which neatly reveals a vortex filament.
(d‒g) Other examples of vortex filaments shown by the residual column density for different condensates with one or more vor-
tices. Note that even though the in situ condensate is always isotropic in the y–z plane it becomes slightly elliptic after a long
expansion due to a residual curvature of the magnetic field used to levitate the condensate against gravity.
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and how this is related to the shape of the vortex core
in the condensate in situ, before the expansion.

3. THEORY
The GP equation for the macroscopic wave func-

tion Ψ(r, t) for a BEC of weakly interacting bosons of
mass m at zero temperature is [1, 2, 22, 23]

(1)

where Vext is the external potential and t is time. The
quantity g is a coupling constant characterizing the inter-
action between the atoms, which is positive for our con-
densates. The stationary version of the GP equation is
obtained by choosing Ψ(r, t) = ψ(r)exp(–iμt/ ), so that

(2)

where μ is the chemical potential and n = |ψ|2 is the
density. In our case, we use the stationary GP equation
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to describe the condensate confined by the axially
symmetric harmonic potential Vext = (m/2)[ x2 +

(y2 + z2)], with the aspect ratio λ = ωx/ω⊥ = 0.1, as
in the experiment. Then we simulate the expansion by
using this solution as the t = 0, starting condition for
the solution of the time dependent GP equation with
Vext = 0. We simulate condensates with and without a
vortex. In the former case, the vortex is rectilinear,
passing through the center and aligned along the z-
axis. The need to accurately describe the dynamics of
the system on both the scale of the healing length ξ
and the scale of the width of the entire expanding con-
densate poses severe computational constraints. With
this in mind, we are only able to perform simulations
up to values of the chemical potential on the order of
10 ω⊥, which are smaller than the experimental values,
ranging from about 15 to 30 ω⊥. Experiments can also
be performed for smaller values of N, and hence smaller
μ, but fluctuations in the density distribution become
relatively larger with decreasing N, and the signal-to-
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noise ratio for the visibility of vortices in axial imaging
becomes too small. The comparison between theory
and experiments hence requires an extrapolation of the
GP results to larger μ and this is possible thanks to scal-
ing laws which are valid for large condensates.

If μ is significantly larger than both ω⊥ and ωx,
then the ground state of the condensate, i.e., the low-
est energy stationary solution of the GP equation, is
well approximated by the Thomas–Fermi (TF)
approximation, which corresponds to neglecting the
first term in the parenthesis of Eq. (2), so that the den-
sity becomes [22, 23]

(3)

within the central region where nTF is positive, and is 0
elsewhere. We can then define the boundary TF radii
Rx = (2μ/m )1/2 and R⊥ = (2μ/m )1/2, the central
density n0 = μ/g, and the rescaled coordinates  =
x/Rx,  = y/R⊥, and  = z/R⊥, and rewrite the density
in the form

(4)
This inverted parabola is a very good approximation
for the density profiles of our condensates except in a
narrow region near the condensate boundaries [51].

In the regime where the TF approximation is valid,
the free expansion is governed by simple scaling laws
[52–54]. In particular, one can prove that the conden-
sate preserves its shape with a rescaling of the TF radii
in time according to Rx(t) = bx(t)Rx(0) and R⊥(t) =
b⊥(t)R⊥(0), where the scaling parameters bx and b⊥ are
solutions of the coupled differential equations  –

/(bx ) = 0 and  – /( ) = 0, with initial con-
ditions bx = b⊥ = 1 and  =  = 0 at t = 0. By using
the aspect ratio λ and introducing the dimensionless
time τ = ω⊥t, one can rewrite the same equations as

(5)

Analytic solutions exist in the limit λ ≪ 1, that is, for a
very elongated ellipsoid, for which one finds [52]

(6)

The correction proportional to λ2 becomes vanish-
ingly small in the limit of the infinite cylinder, where
the condensate is known to follow a scaling behavior
that preserves its radial shape, even in regimes where
the TF approximation does not apply [55].

The TF density profile (4) is not only an accurate
fitting function of the GP density distribution during
the free expansion of an elongated condensate with
μ ~ 10 ω⊥, but the TF radii extracted from the fit also
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agree with the scaling solutions of (5), as well as with
the analytic expressions (6), the discrepancy being less
than 2% in all our simulations, even for long expansion
times. The agreement is expected to be even better for
larger values of μ. This justifies the use of a TF fit to
extract the residual density both in the experiments
and in the GP simulations. The fit also provides the
values of the TF radii and n0 at any given time t, which
can be used to rescale the coordinates and the density.

For comparison with experiments, the key quantity
is the column density, that is, the integral of the den-
sity along the imaging axis. Let us consider a cut of the
density in the z = 0 plane and define ncol( , t) =

n( , , 0, t), where the integral is restricted to the
region where the density is positive. Using the analytic
TF density, one finds

(7)
and we can finally define the residual column density as

(8)
An example is shown in Fig. 2, where we plot δn obtained
in the GP simulation of the expansion for a condensate
with μ = 9.7 ω⊥. The figure shows that, as expected, a
vortex produces a (column) density depletion whose
depth is very small, i.e., only a few percent of the central
column density of the condensate. It also shows that the
depth increases in time during the expansion, while the
width seems to remain almost constant. In Fig. 3 we show
results for the depth and the width obtained in simula-
tions of condensates with different chemical potentials,
plotted as a function of the expansion time.

These results can be qualitatively understood by
using a simplified model where the GP vortex core in
the initial condensate is modeled by an empty cylinder
of radius  = cξ0, where c is a number of order 1 and
ξ0 is the healing length of a uniform condensate with
density n0, which is given by ξ0 = /  =

/ . The rescaled radius is  = /R⊥ = cξ0/R⊥ =
c ω⊥/2μ. Then, let us assume that the initial expan-
sion of the condensate is dominated by the mean-field
interaction in the following sense: a segment of vortex
filament near the center of the condensate expands as
if it were in a uniform condensate, preserving its
shape, but adiabatically following the time variation of
the density of the medium around it. Hence, the vor-
tex radius grows because the density decreases and the
healing length is inversely proportional to . Mean-
while, the transverse and axial TF radii R⊥ and Rx
grow, but with different scaling laws; such a difference
is precisely the origin of the increased visibility of the
vortex. The empty-cylinder model allows calculating
the column density, analytically taking into account all
of these effects. In particular, using the scaling law (6)
and neglecting the λ2 term, one can easily prove that 
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Fig. 2. Residual column density (8) calculated for a GP
simulation of an expanding condensate with μ = 9.7 ω⊥
and with a vortex aligned along z, passing through the ori-
gin. Curves are plotted for different values of the expansion

time, τ = ω⊥t, and are normalized to the value (0, τ),
which is the maximum of the fitted TF column density at
the same time. The coordinate  = y/R⊥ is the distance
from the vortex axis in units of the transverse TF radius
obtained from the same fit. The spatial range is limited to
half the TF radius in order to highlight the print of the vor-
tex in the column density; the effects of the condensate
boundaries are almost negligible in this range.
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Fig. 3. (Color online) Time evolution of the depth (a) and
width (b) of the depletion produced by a vortex in the
residual column density of expanding condensates with
different chemical potentials μ. Depth and width are
defined as the amplitude and the width σ of a Gaussian fit,
respectively. As in Fig. 2, these parameters are normalized
by the central TF column density and the transverse TF
radius. Note that to be consistent with our experiments, for
the purpose of improving the fit quality, prior to fitting we

average δn( , , τ)/ (0, , τ) over different z values
within the interval [–R⊥/3, R⊥/3]. At very early times,
τ ≲ 3, the dip in the residual is too small for the fit to quan-
titatively represent the vortex’s characteristics. The dashed
line is the prediction (10) of the empty core model.
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is constant during the expansion, while the residual

column density takes the form

(9)

and the normalized depth can be written as

(10)

The dashed line in Fig. 3 corresponds to this predic-
tion when c = 1.6 and μ = 9.7 ω⊥. With the same
parameters, the rescaled width of the empty cylinder is

 ~ 0.08, which is in qualitative agreement with the
data in the bottom panel of the same figure. However,
the assumption of adiabaticity is expected to be valid
only at short times, when the density of the expanding
condensate remains sufficiently large. As the expan-
sion proceeds, the mean-field interactions lose their
strength and the velocity field gradually assumes the
characteristics of a ballistic expansion [32, 33]. The
crossover from mean-field to ballistic expansion is
smooth and, for reference, we note that a spherically
trapped condensate is expected to decouple at around
τdec ~  [32], which, for μ = 9.7 ω, would cor-
respond to τdec ~ 4 in Fig. 3. The full GP simulations
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show that the width remains approximately constant
throughout the simulation, while the depth signifi-

cantly deviates from the  law and saturates to a
constant value deep in the ballistic regime.

4. EXPERIMENT vs. THEORY
In this section, we compare the results of the exper-

iments with the predictions of the GP theory for the
overall shape, width and depth of the vortex in the
residual column density.

The depth and the width after a given expansion
time t are shown in Fig. 4 as a function of 1/μ. The two
quantities are extracted from Gaussian fits, and nor-
malized by the central TF column density and the
transverse TF radius as in Fig. 3. In the case of exper-
imental data, we first select condensates exhibiting a
rectilinear vortex filament near their center, at an axial
distance smaller than R⊥/3. We then fit the column
density with the analytic TF profile, but excluding

+ τ21
D THEORETICAL PHYSICS  Vol. 127  No. 5  2018
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Fig. 4. (Color online) Depth (a) and width (b) of the
depletion produced by a vortex in the residual column den-
sity for condensates of different μ. The black + symbols are
obtained from GP simulations for an expansion time τ =
ω⊥t = 70, corresponding to 120 ms; the point at 1/μ = 0 is
the limit of an infinitely large condensate, where both
quantities must vanish. The dashed line in the panel (b) is
the linear law σ/R⊥ ~ ξ0/R⊥ ∝ 1/μ predicted by GP theory
in the TF scaling regime. Points with error bars are the
experimental data. The expansion time is t = 150 ms (red),
t = 120 ms (green and orange) and t = 100 ms (blue); vary-
ing t in this range would change the vertical position of the
experimental data by a negligible amount of the order of
1%. The depth and width are calculated from Gaussian fits
to both GP and experimental distributions of the residual
column density by using the same procedure.
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points lying within a few healing lengths of the fila-
ment. From the fit we obtain the chemical potential
and the TF radii of the “background” condensate and,
by subtracting this background from the column den-
sity, we get the residual δn( ), where  is taken to be
orthogonal to the filament. In order to increase the
signal-to-noise ratio we average the normalized depth
δn( )/ (0) over different z values within the interval
[–R⊥/3, R⊥/3]. Moreover, if a vortex line is displaced

from the center by a distance  = , its
core structure is that of a vortex in a background con-
densate with a density (1 – ) times lower than the
central density; we thus assign to the vortex a value of
μ corrected by the same factor. Finally, for long
expansion times the residual external field makes the
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condensate slightly elliptic in the radial plane. For this
reason, we use both Ry and Rz as independent TF radii
and then we define R⊥ = . The same fitting pro-
cedure is applied to the GP density distributions, for
which the condensate radius is always axially symmet-
ric and the vortex is centered by construction. The
experimental points correspond to four independent
sets of data, where the cooling, evaporation, and
imaging procedures are optimized for condensates
with different atom numbers: red and orange points
correspond to the largest condensates in our labora-
tory (μ ~ 30 ω⊥, t = 150 and 120 ms), blue points are
the smallest condensates in which vortices are still
observable (μ ~ 15 ω⊥, t = 100 ms), while green points
represent an old data set [56] for intermediate conden-
sates (μ ~ 20 ω⊥, t = 120 ms). Error bars account for
statistical noise in the residual column density and for
the uncertainties in the fit.

The GP results clearly show that the rescaled width
σ/R⊥ scales linearly with 1/μ. This is consistent with
the fact that, in the elongated geometry of our conden-
sates, the rescaled width remains almost constant
during the expansion. Another way to understand this is
to note that the in-trap width is proportional to ξ0/R⊥,
and hence to 1/μ, and this scaling survives after long
expansion times, even deep within the ballistic regime
where length ratios become frozen. The dashed line is a
linear fit to the GP points, including the limiting case of
an infinite condensate at 1/μ = 0. Figure 4 shows that
the experimental data are in good agreement with the
GP predictions, especially for the largest condensates,
where the vortex signal-to-noise ratio is the largest.

For the case of vortex depth, the GP theory does
not provide any simple scaling law to compare with the
experimental results considered here. The reason is
that, as discussed in the previous section, the visibility
of the vortex in the residual column density exhibits a
nontrivial dependence on the expansion time, associ-
ated with the crossover from the mean-field domi-
nated early stages of expansion to the later ballistic
expansion dynamics. Eventually, for large t, the nor-
malized depth saturates at a value weakly dependent
on μ (see Fig. 3). The experimental points lie in a
range fully compatible with a smooth interpolation
from the GP results down to the infinite condensate
limit, in the sense that any reasonable interpolating
function would clearly pass through most of the exper-
imental points, within the experimental uncertainties.

In Fig. 5, we show an example of vortex profile in a
condensate with 2 × 107 atoms and chemical potential
μexpt = 33 ω⊥, after an expansion time t = 150 ms. The
full residual column density δn( , ) is plotted in the
inset. The quantity δn( , )/ (0, ) is averaged in
the z direction within the rectangular box, and the
resulting δn( )/ (0) is shown in the main panel of
the figure as a function of . In order to compare the
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Fig. 5. (Color online) Residual column density after 150 ms
of free expansion for a condensate with 2 × 107 atoms and
μ = 33 ω⊥ containing a vortex. The inset shows the full
residual column density in the y–z plane. The quantity

δn( , )/ (0, ) is averaged in the direction z within the
rectangular box and the resulting values (blue points) are
plotted in the main panel as a function of the rescaled coor-
dinate  = y/R⊥, with  = 0 at the vortex position. The solid
curve is the same quantity, obtained with the same fitting pro-
cedure applied to the GP residual column density of a con-
densate with μ = 9.7 ω⊥, after linearly rescaling its width
according to the dashed line of Fig. 4, and reducing its depth
to match the experimental value.
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experimental data with GP theory we proceed as fol-
lows. We first check that the shape of the vortex core
in the residual column density of GP simulations with
different values of μ is the same up to a rescaling of the
width and the depth as in Fig. 4, except for small f luc-
tuations in the tails, which are expected to become
negligible for large μ. This implies that the GP profile
of δn( )/ (0) for the experimental chemical poten-
tial μexpt = 33 ω⊥ should be the same as for the GP
simulation for μGP = 9.7 ω⊥, after rescaling the width
linearly with μ (dashed line in Fig. 4). The solid line in
Fig. 5 is the resulting GP profile, where we fixed the
depth to the experimental value. There is good agreement
between theory and experiment for the overall shape,
including quantitative agreement for the width. The depth
has good qualitative agreement if one considers that the
experimental value lies within a range between the GP
results for smaller μ and the trivial limit for μ → ∞, in a
way that is compatible with any reasonable smooth inter-
polation as already shown in the Fig. 4a.

It is worth noticing that the optical resolution in
our experiments is not limiting the comparison with
theory. To check this, we convolve the GP profile with
a Gaussian having a width in the range σres ~ 2–3 μm,
corresponding to our optical resolution, and we find
that the effects on the points in Figs. 4 and 5 are neg-
ligible (note that the vortex core in Fig. 5 has a width
σ ~ 30 μm ≫ σres). The f luctuations in the experimen-
tal data, which contribute to the error bars in Fig. 4,
are dominated by photon shot-noise in the absorption
images and by systematic spurious optical fringes
which are not completely filtered out.

Finally, we note that thermal atoms are not visible
in our samples, which means that the temperature of
the condensates is significantly smaller than the criti-
cal temperature for Bose–Einstein condensation.
Nevertheless, a certain number of thermal atoms is
still expected to be present in the trapped condensate,
and some of them can be confined within the vortex
core [57]. These atoms should not be present in the
vortex core after the expansion, since their kinetic
energy is sufficient to separate them from the expand-
ing condensate, leaving an empty vortex core. In any
case, our observations suggest that the effect of ther-
mal atoms on the in situ vortex core is limited. In fact,
the good agreement that we find with GP theory (valid
at zero temperature) is an indication that, if thermal
atoms are present, their effects on the shape, width
and depth of the vortex are negligible within the
uncertainties of our experiments.

5. CONCLUSIONS
In summary, we have shown that quantized vortex

filaments can be observed by optical means in 3D
Bose–Einstein condensates of weakly interacting
ultracold atoms, at a level of accuracy which is enough
to allow for a direct comparison with the predictions of

�y TF
coln

�

�

JOURNAL OF EXPERIMENTAL AN
the Gross–Pitaevskii theory for the width, depth, and
overall shape of the vortex core. We found good agree-
ment between theory and experiment. We have per-
formed experiments with large condensates of sodium
atoms and compared the results to those obtained in
numerical simulations. In order to make the vortex
visible we let the condensate expand for a long time.
The expansion dynamics were included in the numer-
ical simulations. We have shown that Thomas–Fermi
scaling laws, valid for large elongated condensates, can
be efficiently used to relate the observed features after
expansion to the structure of the vortex core in the ini-
tially trapped condensate.
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