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Synthetic dissipation and cascade fluxes in a
turbulent quantum gas
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Scale-invariant fluxes are the defining property of turbulent cascades, but their direct
measurement is a challenging experimental problem. Here we perform such a measurement
for a direct energy cascade in a turbulent quantum gas. Using a time-periodic force, we inject
energy at a large length scale and generate a cascade in a uniformly trapped three-dimensional
Bose gas. The adjustable trap depth provides a high-momentum cutoff kD, which realizes a synthetic
dissipation scale. This gives us direct access to the particle flux across a momentum shell of radius
kD, and the tunability of kD allows for a clear demonstration of the zeroth law of turbulence.
Moreover, our time-resolved measurements give unique access to the pre–steady-state dynamics,
when the cascade front propagates in momentum space.

T
he discovery of a universal law describ-
ing the transfer of energy from large to
small length scales in turbulent flowswas
a conceptual breakthrough (1, 2). Despite
their complex spatiotemporal dynamics,

turbulent flows often obey a simple generic
picture: The energy injected into the system
at a large length scale is gradually transferred
to ever smaller ones, flowing locally in Fourier
space through the so-called inertial rangewhere
no dissipation occurs, until it is dissipated at
some small length scale. In Fig. 1A, we depict
such turbulent-cascade dynamics for a com-
pressible field in real space. The field is ini-
tially at rest. At times t > 0, an external force
creates excitations at a large length scale 1/kF.
These excitations propagate to smaller length
scales owing to their nonlinear interactions.
Once they first reach the dissipation scale
1/kD, at time td, the field fluctuates on all
length scales from 1/kF to 1/kD. If a steady
state is established within the momentum
range kF to kD, from thereon energy is dis-
sipated at kD at the same rate at which it is
injected at kF. In such a steady state, the
momentum-space distributions of quantities
such as the energy or wave amplitude are
generically scale-free power laws.
Many quantitative theoretical predictions

about turbulence are based on taking the
mathematical limits kF → 0 and kD → ∞ (3).

Such formal treatments lead to predictions
that are elegant but often counterintuitive.
A key prediction of this kind is that for kD→∞,
the steady-state cascade corresponds to a
scale-invariant (k-independent) energy flux
through momentum space, but no particle
flux (4).
Experimentally, the steady-state power-law

spectra of various quantities have been exten-
sively studied (5–9), whereas the equally funda-
mental cascade fluxes are harder to measure
(10–13). Recently, ultracold atomic gases have
emerged as a versatile platform for studies of
turbulence (9, 14–22), offering experimental
possibilities unavailable in other systems.
Here, we use an atomic gas to directly mea-
sure cascade fluxes in a turbulent system. Our
dissipation scale is tuneable, which allows us
to explore how the fluxes depend on kD, and
to reconcile the experimental observations with
the formal predictions for kD → ∞. Our system
also allows a time-resolved study of the initial
stage of turbulence (23–25), when a steady state
is not yet established, which reveals how the
cascade front propagates in momentum space.
Our experiment starts with a weakly inter-

acting Bose-Einstein condensate of N ≈ 1.2 ×
105 atoms of 87Rb in the uniform potential of
a cylindrical optical box trap of radius R ≈ 16 mm
and length L ≈ 27 mm (Fig. 1B) (26). At the
end of the initial preparation of the gas, the
noncondensed fraction is <10% and the chem-
ical potential is m ≈ kB × 2 nK, corresponding
to a healing length x ≈ 1.2 mm ≪ R, L. We
initiate a turbulent cascade by injecting en-
ergy at the system-size length scale (corre-
sponding to a small momentum kF), using a
spatially uniform force Fsðr; tÞ ¼ F0sinðwstÞx̂,
where x̂ is a unit vector along the box symme-
try axis, F0L ≈ kB × 2.5 nK, and ws ≈ 2p × 9 Hz
is tuned to resonantly excite the soundwave of
wavelength 2L (so kF = p/L) (27). This aniso-
tropic forcing of the matter-wave field is
represented in Fig. 1C as a small dark blue

area elongated along kx. As shown in (9),
after several seconds of shaking, the momen-
tumdistribution of the gas in the inertial range
is statistically isotropic and time-invariant,
n(k, t) ≈ hn(k)i º k–g, with g ≈ 3.5 (28, 29).
The time invariance implies that the energy
and particle fluxes through this k-range are
k-independent, but it does not reveal their
values. Here, we extract the cascade fluxes by
studying the dissipation in our gas.
In conventional fluids, one observes macro-

scopic (hydrodynamic) degrees of freedom, and
the dissipation occurs in the form of heating
(i.e., transfer of energy into the microscopic
degrees of freedom). This dissipation is set by
the viscosity n, which is generally not tune-
able. Moreover, the resulting minute heating
is often difficult to measure because of ther-
mal coupling of the fluid with its surround-
ings (30). Our system is thermally isolated
from the environment, and we have direct
access to all the microscopic degrees of free-
dom, so the dissipation occurs only in the
form of (readily measurable) particle loss.
The optical box (Fig. 1B) has a non-infinite
energy depth UD, so particles with a suffi-
ciently large energy leave the box; in momen-
tum space, UD corresponds to a sphere of
radius kD =

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mUD
p

=ħ (Fig. 1C), where m is
the atom mass and ħ is Planck’s constant di-
vided by 2p. This simple feature realizes a
synthetic dissipation scale, with UD defining
the particle and energy sink. Crucially, this
dissipation scale can be tuned by changing
the trapping laser power (31).
Formally, within the assumptions of the

wave-turbulence theory, the equations of
motion lead to a continuity equation, with a
source and a sink, that is local in momen-
tum space (3):

@nðk; tÞ
@t

¼ Fðk; tÞ � Dðk; tÞ � ∇k �Pnðk; tÞ
ð1Þ

Here F(k, t) corresponds to the external force,
D(k, t) describes the dissipation, and ∇k ⋅ Pn

captures the nonlinear interactions, wherePn

is the particle flux. For F = D = 0, the steady-
state solutions are zero-flux equilibrium thermo-
dynamic states. If F and D are nonzero but
are localized in k space, one can also get non-
equilibrium steady-state solutions with a non-
zero scale-independent flux sustained by the
source F and the sink D.
For an isotropic outflow, the total radial

particle flux is Pn(k) = 4pk2|Pn(k)|. Hence,
from Eq. 1, in the inertial range 4pk2 @n/@t =
–@Pn/@k. Integrating over k shows that we
can measure the particle flux through the shell
at kD by simply counting the atoms remaining
in the trap (see Fig. 1C):

@N

@t
≡ �PnðkD; tÞ ð2Þ
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For a (non-equilibrium) steady state, with
time-invariant n(k) in the inertial range (9),
the particle flux is k- and t-independent (32),
so Pn(kD, t) = Pn(k, t) = Pn.
In steady state, the total radial energy flux,

PE(k, t), is also k- and t-independent in the
inertial range, and is equal to the rate of en-
ergy dissipation. To relate it toPn, we consider
the pertinent case of weakly interacting par-
ticles with a dispersion relation w(k), so the
energy spectrum is E(k, t) = ħw(k)n(k, t); in our
case, w(k) º k2. At k < kD, microscopic in-
teractions drive particles to both lower and
higher k, so the relationship between the net
energy and particle fluxes,PE andPn, is non-
trivial; one might naïvely expect that PE(k) =
ħw(k)Pn(k), but this cannot be true if bothPE

and Pn are k-independent and w(k) is not.
However, at kD the particles flow only one way
because there is no “backflow” from the sink
into the inertial range, so one can intuitively
write

PEðkDÞ ¼ ħwðkDÞ PnðkDÞ ð3Þ
Steady state then requires PE = ħw(kD)Pn at
all k in the inertial range; for our w(k), this
means that PE º kD

2Pn. To formally derive
Eq. 3, one multiplies Eq. 1 by ħw(k) and in-
vokes the continuity equation for the energy
to obtain

@PEðk; tÞ
@k

¼ ħwðkÞ @Pnðk; tÞ
@k

ð4Þ

in the inertial range. For k < kD, this equation
is trivially satisfied by both of its sides being
zero, and does not impose any relation be-
tween PE(k) and Pn(k). However, integrating
it across a shell around kD, and setting n(k)
and all fluxes to zero for k > kD, recovers Eq. 3.
Experimentally, we vary kD while keeping

F0 fixed and measure Pn(kD) according to
Eq. 2. To mitigate the effects of the long-term
few-percent drifts in the initial N, and of the
additional atom loss through collisions with
the background-gas particles, we perform dif-
ferential measurements of the cascade-induced
atom loss, Nloss, with reference measurements
taken by setting F0 to zero in an otherwise
identical experimental sequence.
In Fig. 2, we show Nloss as a function of the

shaking time ts for various values of UD. In all
cases at short times, we observe no loss (within
error). This is consistent with the expectations
that no losses occur at k < kDº

ffiffiffiffiffiffiffi

UD
p

and that
initially it takes time for the excitations to cas-
cade to kD, when a steady state can be estab-
lished (see Fig. 1). For ts longer than some onset
time td, the loss rate @Nloss/@t is essentially
constant in time, as long as the total loss is
relatively small (<30% of the initial N ≈ 1.2 ×
105). The dashed lines show piecewise linear
fits that we use to extract, for each UD, both
td and the subsequent initial loss rate, which
we identify with the steady-state particle flux

Pn =Pn(kD). Atmuch longer times, ts ≫ td, the
steady-state assumption can no longer hold,
because the losses gradually deplete the low-k
source of atoms.
In Fig. 3, we show a log-log plot of Pn ver-

sus UD (31). We observe power-law behavior
withPnº UD

–1.05±0.08º kD
–2.10±0.16. We com-

plement these measurements with numerical
simulations based on theGross-Pitaevskii equa-
tion, for the same forcing protocol andwithout
any free parameters [see (27) for details]. The

numerical simulation results are shown by
solid circles; a fit to the numerical data gives
PnºUD

–1.04±0.01, in good agreement with the
experimental data.
The so-called zeroth law of turbulence, first

formulated in the context of classical incom-
pressible fluids, stipulates that for fixed forcing,
the steady-state rate of energy dissipation tends
to a nonzero constant as the viscosity vanishes
(n → 0) (5, 33). In our case, this corresponds to
keeping F0 fixed and taking kD → ∞ (34). This
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Fig. 1. Turbulent cascade in a box-trapped quantum gas. (A) Cartoon of real-space dynamics of a
turbulent wave. Energy is injected by applying a force at a large length scale, 1/kF, and propagates to smaller
scales because of nonlinear interactions. A steady state can be established when the excitations first reach
the small dissipation length scale, 1/kD, at time td. (B) Sketch of the experimental setting. The atoms
are trapped in a finite-depth potential in the shape of a cylindrical box, formed by laser barriers. The shaking
force is applied along the x axis. (C) In momentum space, the dissipation scale kD is set by the trap depth;
when excitations propagate to kD, dissipation occurs in the form of particle loss.

Fig. 2. Atom-loss dynam-
ics associated with the
turbulent cascade. The
graph shows atoms lost
versus shaking time ts for
different trap depths UD
(at ts = 0, the atom
number is N ≈ 1.2 × 105).
Data points show averages
of typically 50 measure-
ments. Dashed lines
are piecewise linear fits.
The systematic uncertainty
in UD values is 20%.
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law implies that the particle flux should vanish
as Pn ~ kD

–2 (see Eq. 3), in excellent agreement
with our data. Note that the steady-state energy
balance also requires that PE is equal to the
rate of energy input into the system, e. How-
ever, energy conservation alone is not suffi-
cient to predict the scaling of Pn with kD,

because it is not a priori obvious that for fixed
F0 the rate at which the system absorbs en-
ergy from the drive is not affected by changing
kD (35). Only a posteriori, from Fig. 3 (and the
conservation of energy), can we see that in our
system the steady-state e must be indepen-
dent of the dissipation length scale down to

our lowest kD. If kD were changed dynamically,
for a system to reach a new steady state the
particle flux would have to self-consistently
adjust at all kF < k < kD, because the steady-
state Pn must be both kD-dependent (to sat-
isfy the zeroth law) and k-independent for a
given kD.
Having established a consistent picture of

the steady-state fluxes in our gas, we now turn
to the pre–steady-state turbulent dynamics. In
Fig. 4A, we depict the early-time dynamics in
Fourier space. The forcing, which generates a
surplus of atoms at kF, initiates the cascade at
ts = 0. As the cascade front, kcf (ts), propagates
to higher k, the steady-state momentum dis-
tribution, n(k)º k–g, is established in its wake
[see also (27)]. The dynamics are dissipation-
less until kcf reaches kD (at time td); only then
is a steady state, with matching e and PE(kD),
established. Hence, our experimental observa-
tions of the initial dissipationless stage of tur-
bulence (ts < td), and the dependence of td on
UD, give us access to the dynamics of the
cascade front in momentum space.
At ts < td, the instantaneous particle flux

is k-independent for k < kcf(ts), vanishes for
k > kcf(ts), and must match the rate of the
population increase in the inertial range:
n(kcf)4pkcf

2dkcf = Pn(kcf)dts, so kcf
2–gdkcf º

Pn(kcf)dts. Analogously, for the increase of
total energy in the inertial range, kcf

4–gdkcf º
PE(kcf)dts, and PE(kcf) is equal to the instan-
taneous energy injection rate e.
Assuming that e, which we found not to

depend on kD in steady state, is also indepen-
dent of kcf at ts < td, then the instantaneous
Pn(ts), at k < kcf(ts), is º kcf

–2. This gives an
elegant unifying picture of the particle fluxes
for ts < td and ts > td [Fig. 4A, inset, and (27)]:
Pn is always the same function of the highest
k for which the steady-state n(k) has been
established (i.e., the lowest k from which there
is no backflow), whether that is the instanta-
neous kcf < kD (for ts < td) or kD. This self-
consistent picture also leads to a quantitative
prediction that is verifiable in our experiments:
The time independenceof e implieskcf

4–gdkcfº
dts, which for g < 5 and kD ≫ kF gives a power-
law prediction td º UD

b, with b = (5 – g)/2.
Specifically, for our g = 3.5 ± 0.1 (9), we pre-
dict b = 0.75 ± 0.05.
In Fig. 4B, we show the variation of td with

UD. We find that our data are indeed well
described by a power law, with b = 0.73 ± 0.06,
in agreement with our prediction. The results
of our numerical simulations (solid circles)
show similar behavior with a small system-
atic offset; a fit to the numerical data gives
b = 0.71 ± 0.01.
Finally, we note that the criterion for td to

show scaling behavior, namely g < 5 and hence
b > 0, is intimately linked to another impor-
tant concept in the theory of turbulence. For
g < 5, the steady-state spectrum has infinite
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Fig. 3. Steady-state parti-
cle flux. The atom-loss rate
Pn versus the dissipation
energy scale UD (open
symbols) is shown on a log-
log plot; the three colored
points correspond to the
data shown in Fig. 2. Solid
symbols show the results of
numerical simulations (27).
The systematic uncertainty
in UD values is 20%. A
power-law fit to the experi-
mental data (solid line)
gives Pn º UD

–1.05±0.08 º
kD

–2.10±0.16, in agreement
with the theoretical prediction.

Fig. 4. Establishing the
steady state: The
cascade-front dynamics.
(A) Momentum-space
turbulent dynamics.
Forcing occurs at kF and the
steady-state distribution
n(k) is established in the
wake of the cascade front
kcf(ts), which propagates
outward until it reaches
kD at time td. For clarity,
here we show an idealized
sketch with a very large
separation between kF and
kD; see (27) for numerical
simulations with our experi-
mental parameters. Inset:
Consistent picture for the
evolution of the energy flux
PE and particle flux Pn for
three different times, t1
(blue) < t2 (purple) < t3
(black), with t2 < td < t3. The
forcing and dissipation
scales are indicated by the
vertical arrows, as in the
main panel. (B) Onset time
for dissipation. Open
symbols show the measured
td values versus UD on a log-
log plot; the three colored
points correspond to the data shown in Fig. 2. Solid symbols show the results of numerical simulations (27).
The systematic uncertainty in UD values is 20%. A power-law fit, td º UD

b, to the experimental data
(solid line) gives b = 0.73 ± 0.06, in agreement with the prediction b = 0.75 ± 0.05.
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energy capacity, meaning that it carries in-
finite energy for kD → ∞. It is indeed gen-
erally expected for infinite-capacity systems
that the cascade front propagates at a finite
speed and that the Kolmogorov-Zakharov
turbulence spectrum forms behind it (36).
Our work provides a complete, consistent

picture of the wave turbulence dynamics at
both short (pre–steady-state) and long (steady-
state) times. In the broader context of far-from-
equilibrium many-body quantum systems, a
turbulent quantum gas with a large kD pro-
vides a particularly interesting example of an
essentially stationary nonthermal state [see
also (37–39)]. The possibility of synthetic dissi-
pation also opens new theoretical perspectives.
In the future itwould be interesting to engineer
arbitrary momentum-cutoff landscapes, which
could, for example, allow studies of anisotropic
turbulence. By dynamically tuning the dissipa-
tion scale or the driving force, it should also be
possible to study quenches between different
turbulent states.
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