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Two-mode Dicke model from nondegenerate polarization modes
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We realize a nondegenerate two-mode Dicke model with competing interactions in a Bose-Einstein condensate
(BEC) coupled to two orthogonal polarization modes of a single optical cavity. The BEC is coupled to the
cavity modes via the scalar and vectorial part of the atomic polarizability. We can independently change these
couplings and determine their effect on a self-organization phase transition. Measuring the phases of the system,
we characterize a crossover from a single-mode to a two-mode Dicke model. This work provides perspectives
for the realization of coupled phases of spin and density.
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I. INTRODUCTION

The Dicke model captures the coupling between a single
electromagnetic field mode and an ensemble of two-level
atoms [1]. This paradigmatic model is central to many devel-
opments in quantum optics [2,3]. It also makes a connection
to concepts usually studied in the context of condensed matter
physics [4,5], since it predicts, for strong enough coupling, a
phase transition from a normal to a superradiant state even
at zero temperature [6–8]. Theoretical investigations of the
Dicke model and its variants [9–14] have given insights into
the critical behavior of open quantum many-body systems
[4,15–17], chaos [18], enhanced symmetries [19–21], and
multipartite entanglement [2,22,23].

A few years ago, the Dicke model was realized experi-
mentally in a driven-dissipative system coupling the external
degree of freedom of a Bose-Einstein condensate (BEC) to
an optical cavity via the atomic scalar polarizability [24–26].
Since then, experiments have striven to extend their possibili-
ties in order to realize interesting variants of the single-mode
Dicke model. In one approach, multimode Dicke models are
engineered by coupling the atomic density to multiple cavity
modes via the scalar atomic polarizability [27–29]. In a sec-
ond approach, single-mode Dicke spin-models are realized,
exploiting the vectorial atomic polarizability [30–33].

In this article we combine these two concepts in order to
achieve competing interactions between density and spin. We
realize a nondegenerate two-mode Dicke model by coupling a
BEC to the two fundamental polarization modes of a single
cavity via both the scalar and the vectorial polarizabilities
where we can tune their interaction strengths independently.
From a quantum simulation perspective, our system delivers
the basic ingredients for the realization of condensed matter
models with competing spin and density order parameters
[34,35], where, for example, open questions concern the
scaling properties close to a multicritical point [36].
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II. EXPERIMENTAL APPROACH

We conduct self-organization experiments of a spin-
polarized 87Rb BEC to two TEM00 modes of an ultrahigh-
finesse optical cavity with orthogonal polarizations, which we
label as ⊥ and ‖. Our scheme exploits the magneto-optical in-
teraction between matter and light: The atomic cloud couples
to the ⊥ mode via the vectorial atom-light coupling and to the
‖ mode, independently, via the scalar atom-light coupling. The
atom-light interaction for each atom in the BEC is captured by
an atomic dipole operator [37] which can radiate in either of
the cavity modes as described by the interaction energy (see
Appendix B),

Ĥint = −αsÊ† · Ê + iαv(Ê† ∧ Ê)
F̂

2F
, (1)

where αs and αv are the scalar and vectorial atomic polar-
izabilities, F̂ is the atomic pseudospin vector operator de-
scribing the total atomic angular momentum, and Ê is the
total electric field operator. The vector part of the interaction
can be controlled independently from the scalar part via the
atomic spin vector F̂. The atomic tensor polarizability has
been neglected since it is vanishing for the wavelength range
employed in our experiment [37].

Our experimental setup is sketched in Fig. 1. The BEC is
illuminated with an off-resonant standing-wave laser beam
of angular frequency ωp. This beam is referred to as the
transverse pump and is angled at 60◦ with respect to the
cavity and is polarized along ez. The ‖ and ⊥ modes have
polarizations parallel and orthogonal to the transverse pump
polarization, respectively. They are separated by the frequency
difference δ = ω‖ − ω⊥ = 2π × 3.89(1) MHz, due to bire-
fringence. This frequency scale is large compared to the
linewidth of the cavity κ/(2π ) = 147(4) kHz.

The total Hamiltonian describing the BEC-cavity system is
(see Appendix B)

Ĥ = −h̄�‖â†â − h̄�⊥b̂†b̂ + h̄ωrecĉ†ĉ

+ αs
EpE0

2
√

2
(â† + â)(ĉ†ĉ0 + H.c.)

2469-9926/2019/100(1)/013816(7) 013816-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.013816&domain=pdf&date_stamp=2019-07-09
https://doi.org/10.1103/PhysRevA.100.013816


ANDREA MORALES et al. PHYSICAL REVIEW A 100, 013816 (2019)

FIG. 1. Engineering tunable vectorial and scalar couplings in a
quantum gas coupled to an optical cavity. A Bose-Einstein con-
densate (BEC) of 87Rb atoms (in blue) is optically trapped at the
center of an optical cavity with the wave vector kc = kcec. The
BEC is illuminated by a red-detuned optical lattice beam with the
wave vector kp = kpey and with the wavelength λp = 785.5 nm,
which we refer to as the transverse pump. Its frequency is close to
the resonance frequencies of two birefringent modes (‖, ⊥) of the
cavity (in light blue and orange) which are separated in frequency by
3.89(1) MHz. The pump and the cavity are tilted at 60◦ and kp = kc.
The polarization of the transverse pump electric field Ep is linear and
oriented along z, parallel to the electric field E‖ of the the vertically
polarized cavity mode and orthogonal to the electric field E⊥ of the
horizontally polarized cavity mode. The atomic pseudospin F̂ can be
oriented in the ez-ec plane by a bias magnetic field as described by the
angle ϕ. Due to the finite reflectivity of the cavity mirrors, intracavity
photons in the modes ⊥ and ‖ leak from the cavity in free space.
Using a polarizing beam splitter placed on the axis of the cavity and
two single-photon counting modules, we can detect photons in the
cavity modes in real-time.

+ iαv

[
EpE0

2
√

2
(b̂† − b̂)(ĉ†ĉ0 + H.c.)

+ E2
0

2
(â†b̂ − b̂†â) ĉ†

0ĉ0

]
mF

2F
cos ϕ. (2)

The annihilation (creation) operators of an atom in the BEC
are given by ĉ0 (ĉ†

0). The annihilation (creation) operators
of an atom in the momentum superposition resulting from
scattering photons between the pump and the cavity are given
by ĉ (ĉ†). The operators â and b̂ (â† and b̂†) are the annihilation
(creation) operators of photons in the cavity modes ‖ and
⊥ (with the electric field amplitude E‖ = E⊥ = E0 for a
single intracavity photon). Ep is the electric field amplitude
of the transverse pump. The single-photon recoil frequency is
ωrec = 2π × 3.77 kHz. The quantities �⊥/‖ = ωp − ω⊥/‖ −
NU0/(2h̄) are the detunings of the transverse pump from the
dispersively shifted cavity resonances of the modes ⊥ and
‖. The total atom number is N with the number operator
N̂ = ĉ†

0ĉ0 + ĉ†ĉ, h̄ is the reduced Planck constant, and mF =
−F, . . . , F labels the magnetic sublevels in the pseudospin
manifold F .

The second line of the Hamiltonian describes the scalar
part of the coupling. Here, the BEC couples to the real (or
in-phase) quadrature (â + â†) of the vertically polarized mode
of the cavity. When �‖ < 0 and for strong enough coupling,
this term can drive the system into a self-organization phase
(SO‖). In this phase, the cavity mode becomes macroscopi-
cally populated while the atoms build up a density modulation
which can be detected in absorption images after ballistic
expansion [24,38]. In fact, when a density fluctuation occurs
in the BEC, a weak light field is scattered by the atoms into
the cavity and builds up an intracavity field. At the position
of the density fluctuation, the phase shift of the intracavity
field relatively to the scattered field is zero when �‖ < 0 such
that the resulting potential enhances the density fluctuation.
For �‖ > 0, the phase shift is π and density fluctuations are
suppressed. Therefore, self-organization can only happen for
�‖ < 0.

In between the squared brackets, two terms describe the
vectorial part of the coupling. Both involve a cavity electric
field of the form i(b̂† − b̂) and therefore describe coupling to
the imaginary (or out-of-phase) quadrature of the ⊥ polarized
cavity mode. When �⊥ < 0, the first term can also drive the
system into a self-organization phase (SO⊥). The second term
describes scattering from the ‖ mode to the ⊥ mode and
vice versa, with the rate αvE2

0 /2[mF/(2F )cos ϕ]. Differently
from the scalar part of the coupling, the vectorial part can be
controlled via the angle ϕ between F̂ and the cavity axis ec

and can therefore be tuned independently.
The experiment starts with a BEC of 3.5(3) × 105 atoms

of 87Rb which is positioned at the center of the fundamental
mode of the optical cavity (see Fig. 1). The transverse pump
lattice wavelength is set to λ = 785.5 nm, where the ratio
αv/αs = 1.085 [37]. The BEC is prepared in the atomic spin
state |F = 1, mF = −1〉 and spin-changing processes are sup-
pressed by a large Zeeman shift (see Appendix A). We control
the direction of the atomic spin in three dimensions by apply-
ing a magnetic offset field generated with four pairs of coils.
The magnetic field direction and amplitude are calibrated by
performing radio-frequency spectroscopy on the BEC (see
Appendix A). We monitor the intracavity photon number via
the light field leaking out of the cavity. The polarization of the
intracavity light field is analyzed by placing a polarizing beam
splitter at the cavity output that directs ⊥ and ‖ photons to two
independent single-photon counting modules.

III. RESULTS AND DISCUSSION

In a first experiment, we orient the magnetic field along the
cavity axis such that both the scalar and vectorial atom-light
couplings are maximal [see Eq. (2)]. For fixed detunings �⊥
and �‖ = �⊥ − δ we ramp up in 50 ms the transverse pump
lattice depth (VTP) from zero to 12 h̄ωrec, while simultaneously
recording the output of the cavity in real time. The measured
intracavity photon numbers are reported in Fig. 2 for different
cavity detunings. The two panels show the photons detected
on the ‖ and ⊥ polarization modes of the cavity. In each
panel, two phases are immediately visible, corresponding to
the phases SO‖ and SO⊥. In the SO‖ phase, we detect photons
in the ⊥ mode even when �⊥ > 0. For smaller values of
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FIG. 2. Phase diagram of scalar and vectorial self-organization
in a birefringent cavity. At ϕ = 0(4)◦, the calibrated intracavity
photon numbers in the ‖ (left panel) mode and the ⊥ (right panel)
mode are recorded for different cavity detunings during ramps of
50 ms of the transverse pump (TP) lattice depth from 0 to 12 h̄ωrec.
Experimentally we change the cavity detuning in steps of 100 kHz.
The intracavity and transverse pump lattice depths are calibrated
by performing Raman-Nath diffraction on the BEC, and the disper-
sive shift is measured independently (see Appendix A). The black
dashed lines are the predictions for the phase boundaries of the self-
organization phases resulting from our theoretical model. The gray
area indicates the detunings at which self-organization is suppressed
by the simultaneous coupling to both polarization modes. On the
right side, the solid black line indicates the cavity resonances for the
birefringent modes.

�⊥ > 0, the critical pump lattice depth diverges and in a finite
region of cavity detunings self-organization is forbidden.

Our results can be understood by mapping the Hamiltonian
in Eq. (2) on a two-mode Dicke model [9,20,21]. We define
β̂ = ib̂ and then perform a rotation in the space of the photonic
operators according to the unitary transformations

â = t̂ cos θ + d̂ sin θ,

β̂ = −t̂ sin θ + d̂ cos θ. (3)

Choosing the angle θ = 1
2 tan−1 ( λ⊥‖N0 cos ϕ

−h̄ (δ/2) ), where λ⊥‖ =
αv
2 E2

0
mF
2F , the resulting two-mode Dicke Hamiltonian (see Ap-

pendix B) reads as

Ĥ = − h̄�t t̂
†t̂ − h̄�d d̂†d̂ + h̄ωrecĴz

+ λt√
N

(t̂† + t̂ )Ĵx + λd√
N

(d̂† + d̂ )Ĵx, (4)

where we have introduced the quantities

�t = �‖ cos2 θ + �⊥ sin2 θ − λ⊥‖
h̄

N0 sin(2θ ) cos ϕ,

�d = �‖ sin2 θ + �⊥ cos2 θ + λ⊥‖
h̄

N0 sin(2θ ) cos ϕ,

λt = λs cos θ + λv sin θ cos ϕ,

λd = λs sin θ − λv cos θ cos ϕ,

and the pseudospin operators Ĵz = ĉ†ĉ and Ĵx =
(ĉ†ĉ0 + H.c.). We have defined λs = EpE0αs

√
N

2
√

2
and

λv = EpE0αv
√

N

2
√

2
( mF

2F ). This Hamiltonian describes the coupling

of a macroscopic pseudospin Ĵ to two modes of the

electromagnetic field described by the operators t̂ and
d̂ .

From this Hamiltonian one can calculate the equation
of motion of the system in a mean-field theory where the
operators are substituted by their expectation values. A self-
organized phase corresponds to a nonzero steady state value of
the average value of Ĵx or, equivalently, to a nonzero average
photon level in either cavity mode. Since the photons scattered
into each cavity mode provide an optical potential that evolves
on a time scale much faster than the atomic dynamic, we can
perform an adiabatic elimination of the cavity fields. We thus
consider the steady-state values

t̂ = λt√
N

Ĵx

�t + iκ
,

d̂ = λd√
N

Ĵx

�d + iκ
,

(5)

from which we obtain an effective steady-state solution for
Jx = 〈Ĵx〉 (see Appendix B) [25]. Following this procedure,
we obtain the equation

Jx = ±N

2

√
1 − ω2

rec

η2
, (6)

where the phase boundary of the self-organization phase
transition is fixed by the condition

r ≡ 1 −
(

λt

λcrit
t

)2

−
(

λd

λcrit
d

)2

= 0. (7)

We have defined (λcrit
t,d )2 ≡ −h̄ωrec(�2

t,d + κ2)/(4�t,d ). Self-
organization occurs when r < 0 and results from the simulta-
neous coupling to the two birefringent modes.

In particular, when �t < 0 and �d > 0, (λcrit
t )2 is positive

but (λcrit
d )2 is negative and the critical lattice depth increases,

as observed in the experiment. In a certain range of detunings,
the condition r < 0 has no real solution and self-organization
is forbidden (see gray area in Fig. 2). The black dashed lines in
Fig. 2 show the theoretical prediction for the phase boundary
which is in good agreement with the experimental data. In
addition, from the steady-state values of t and d [see Eq. (5)],
we can see that, when a density modulation Jx is formed on the
BEC, indeed both cavity modes are populated with photons.

A transition from a two-mode to a one-mode Dicke model
is observed by changing the vectorial part of the coupling
independently from the scalar one. Experimentally, we align
the pseudospin F̂ at different angles ϕ in the ec-ez plane.
Figures 3(a)–3(d) shows the resulting phase diagrams for ϕ =
30◦, 60◦, 80◦, and 90◦. As the vectorial part of the coupling
is diminished, the effect of the ⊥-polarization mode of the
cavity decreases and the system is described by a single-mode
Dicke model [Fig. 3(d)]. The measured phase diagrams agree
well with the numerical simulations [see Fig. 5]. We attribute
the residual feature in the ⊥ mode in Fig. 3(d) to imperfect
alignment of the pump polarization with the atomic spin.

The competing character of the two modes is visible in the
shift of the critical point of the SO‖ and SO⊥ phases when the
vectorial part of the coupling is changed. At fixed cavity de-
tunings �‖/(2π ) = −3.0 MHz and �‖/(2π ) = −5.2 MHz,
we measure the phase boundary for different angles ϕ. The
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FIG. 3. Tuning the vectorial atom-light coupling. (a–d) Starting
from a situation where the magnetic field B is oriented at ϕ =
30(4)◦ in the ez-ec plane and scalar and vectorial components of the
polarizability are similarly strong (a), we orient the atomic spin F̂
at the angles ϕ = 60(4)◦, 80(4)◦, and 90(2)◦ (b, c, d). When the
magnetic field B is parallel to the z axis (d), the vectorial coupling
vanishes and scattering in the ⊥ mode is suppressed. We attribute the
residual feature in the ⊥ mode to imperfect alignment of the pump
polarization with the atomic spin.

result of the measurement is shown in Fig. 4. For small
angles ϕ, when the vectorial coupling to the ⊥ mode is
large, the critical lattice depth has higher (lower) values in
the SO‖ (SO⊥) phase. As the angle ϕ increases, the coupling
to the ⊥ mode decreases according to αv

EpE0

2
√

2
mF
2F cos ϕ. The

critical point is shifted to higher or lower critical lattice depth,
depending on the cavity detuning, as it is shown by the solid
lines in Fig. 4.

IV. CONCLUSIONS

In conclusion we have shown that we can engineer simul-
taneously scalar and vectorial atom-light couplings to two
orthogonal polarization modes of an optical cavity. Our ex-
perimental results can be cast into a nondegenerate two-mode
Dicke model where the strength of the vectorial component of
the atomic polarizability can be tuned independently from the
scalar component. Measuring the change in the critical point
of the self-organization phase transitions, we demonstrated

FIG. 4. Effect of the mode competition on the phase boundary.
In two independent measurements, we set �‖/(2π ) = −3.0(3) MHz
and �‖/(2π ) = −5.2(3) MHz and ramp up the transverse pump
lattice depth from 0 to 12 h̄ωrec. We extract the phase boundary for
different magnetic field configurations by setting a threshold on the
intracavity photon number at 4. Each point is an average over up to
ten repetitions. The error bar is the standard deviation extracted from
the consecutive measurements of the photon threshold and includes a
10% uncertainty on the TP lattice depth. The solid lines are the theory
prediction and the shaded areas include an experimental uncertainty
of 10% on the measurement of the dispersive shift. We attribute the
residual mismatch of the theory curve with the experimental data to
the variable overlap of the BEC with the transverse pump field.

how the simultaneous presence of these interactions results
in scenarios of competition. These results offer a promising
perspective to realize intertwined phases of spin and density
degrees of freedom.
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APPENDIX A: EXPERIMENTAL DETAILS

Setup and preparation of the Bose-Einstein condensate
(BEC). We prepare an almost pure BEC of N = 3.5(3) ×
105 atoms in an optical dipole trap formed by two orthog-
onal laser beams at a wavelength of 1064 nm along the
x and y axes. The trapping frequencies are (ωx, ωy, ωz) =
2π × [120(2), 78(1), 193(2)] Hz. The trap position coincides
with the center of two TEM00 optical modes (‖, ⊥) of a
high-finesse cavity [27]. The atom number is extracted by
measuring the magnitude of the dispersive shift NU0/(2h̄) =
170(10) kHz of the cavity resonance in the presence of the
BEC. The intracavity lattice depth per photon U0 is calculated
from the geometry of the cavity and taking into account the
D1 and D2 atomic lines. The cavity has a birefringence of
δ = 2π × 3.89(1) MHz between the horizontally (⊥) and
vertically (‖) polarized modes. We can adjust the resonance
frequency of the cavity mode with piezoelectric elements that
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are included in the mount of each cavity mirror. The frequency
is actively stabilized with the help of an additional laser beam
at ∼830 nm. The corresponding residual intracavity lattice
potential of ∼0.1 Erec is negligible with respect to the critical
lattice depth for the self-organization phase transition and is
incommensurate with the cavity mode.

Lattice and photon number calibrations. In order to cal-
ibrate the lattice depths of the transverse pump and each
cavity field we perform Raman-Nath diffraction on the atomic
cloud. The intracavity photon number calibration can be
calculated from the lattice depth per photon U0. We extract
detection efficiencies of 1.94(1)% and 1.0(1)% for detecting
with single-photon counting modules an intracavity photon in
the modes ‖ and ⊥, respectively.

Detection of the cavity output polarization. The intracavity
light field leaking from the mirror is split on a polarizing beam
splitter (PBS) that separates the reflected (αR) and transmitted
(αT) part of the light field onto single-photon detectors. Due
to imperfect alignment of the cavity modes ⊥ and ‖ with the
PBS axis we calibrate α‖ = √

n‖ and α⊥ = √
n⊥ from αT and

αR. The results are plotted in Figs. 2 and 3.
Magnetic field calibration and manipulation. To calibrate

the direction of the magnetic field we perform radio-frequency
spectroscopy on the atomic cloud. Using three sets of mag-
netic coils aligned orthogonal to each other, we can identify
the orientation of the residual magnetic field in the laboratory
at the position of the atoms and compensate it. Before spon-
taneous demagnetization of the cloud occurs due to magnetic
noise, we can reduce the magnetic field at the BEC position
to values as low as ∼14 mG, which corresponds to a Zeeman
shift of about ∼10 kHz for atoms in the F = 1 manifold. We
use these three pairs of coils to orient the magnetic field in
space. Each pair of coils allows on to maximally generate
a field of ∼3 G at the BEC position. All data shown in
the main text are taken with a large offset field B � 4 G,
creating a Zeeman level splitting larger than �⊥. In this way,
collective cavity-pump Raman transitions between different
Zeeman sublevels are suppressed where a pump photon could
be scattered into the cavity while changing the spin state of
the atom. For ϕ = 90◦ we use an additional pair of magnetic
offset coils.

APPENDIX B: THEORETICAL DESCRIPTION

Quantum-optical Hamiltonian. We now consider the effect
of the pseudospin F̂ of the atoms on the self-organization
phase transition in our setup. Here we show how the geometry
of our pump polarization and cavity birefringence generates
the Hamiltonian in the main text. The role of the atomic spin
on the self-organization phase transition has been recently
studied [31]. In our theoretical description, we refer to the
system depicted in Fig. 1, where the (pseudo-) spin is aligned
in the ez-ec plane. The two orthogonal birefringent modes of
the cavity are labeled ⊥ for the horizontal mode and ‖ for the
vertical mode. The total electric field operator Ê is the sum of
the coherent pump field Ep and the quantized ⊥ (E⊥) and ‖
(E‖) fields of the cavity:

Ê = Ep + E‖â + E⊥b̂. (B1)

FIG. 5. Mean-field solution of the phase diagram. The photon
levels n‖ and n⊥ are shown as a function of the transverse pump
lattice depth (VTP) and cavity detuning (�‖) for different values of
the angle ϕ. The transverse pump and cavity detuning ranges chosen
are equivalent to the data shown in Fig. 3.

Here, we assume the pump laser to be a classical field while
the ‖ and ⊥ modes are quantized fields with associated
annihilation operators â and b̂.

The atom-light interaction Hamiltonian can be written in
the following form [37]:

Ĥint = −Ê†αÊ = −αsÊ† · Ê + iαv(Ê† ∧ Ê)
F̂

2F
, (B2)

where α is the polarizability tensor of the atom composed of
a scalar (αs) and a vectorial part (αv). The electric fields Ep =
Ep

2 cos (kpy) ep, E‖ = E0 cos (kc · r) e‖, and E⊥ = E0 cos (kc ·
r) e⊥ are linearly polarized, with ep = e‖ = ez, e⊥ =

√
3

2 ey −
1
2 ex and mode functions cos (kc · r) and cos (kpy). ex, ey,
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and ez are the unit vectors pointing along x, y, and z (see
Fig. 1). For this choice of polarizations, the scalar part of the
Hamiltonian has the form

Ĥs = −αsÊ† · Ê = −αsE2
p − αsE2

‖â†â

[3pt] − αsE2
⊥b̂†b̂ − αsEp · E‖(â† + â), (B3)

which is the standard form describing self-organization [24].
The vectorial part can be evaluated by carrying out the vector
products

Ĥv = iαv(Ep + E‖â† + E⊥b̂†) ∧ (Ep + E‖â + E⊥b̂)
F̂

2F

[3pt] = iαv[(Ep ∧ E⊥) b̂ + (E‖ ∧ E⊥) â†b̂ + (E⊥ ∧ Ep) b̂†

[3pt] + (E⊥ ∧ E‖) b̂†â]
F̂

2F

= iαv
[
E2

0 (â†b̂ − b̂†â) cos2(kc · r)

[3pt] + EpE0(b̂ − b̂†) cos(kc · r) cos (kpy)
](

ec · F̂
2F

)
,

(B4)

where ec is the unit vector along the direction of the cavity
axis (see Fig. 1).

The first term in the result of Eq. (B4) describes a direct
coupling between the modes ⊥ and ‖, whereas the second
term is a coupling between the transverse pump and the out of
phase quadrature of the b̂ mode. Since the vectorial part of the
Hamiltonian is proportional to the product (ec · F̂) between

the pseudospin F̂ and the cavity unit vector ec, its contribution
vanishes if they are orthogonal to each other.

In the rotating frame of the pump, we can write the
many-body Hamiltonian of the BEC-cavity system including
the energy cost of intracavity photons, the kinetic energy
of the atoms, and the contributions from Eqs. (B3) and
Eq. (B4) as

ĤBEC = −�‖â†â − �⊥b̂†b̂

+
∫


̂†(r)

(
p̂2

2m
+ Ĥs + Ĥv

)

̂(r)dr. (B5)

Following the procedure reported in the supplementary ma-
terial of Ref. [27], we restrict the ansatz of the atomic wave
function and derive an effective Hamiltonian describing the
BEC-cavity system. The resulting Hamiltonian reads as

Ĥ = −h̄�‖â†â − h̄�⊥b̂†b̂ + h̄ω−ĉ†
−ĉ− + h̄ω+ĉ†

+ĉ+

+ 1

2
√

2
αsEpE0(â† + â)(ĉ†

−ĉ0 + ĉ†
+ĉ0 + H.c.)

+ iαv

[
1

2
√

2
EpE0(b̂† − b̂)(ĉ†

−ĉ0 + ĉ†
+ĉ0 + H.c.)

+ 1

2
E2

0 (â†b̂ − b̂†â)ĉ†
0ĉ0

](
ec · F̂

2F

)
, (B6)

where �‖/⊥ include the dispersive shift of the cavity reso-
nance due to the atoms. ĉ0, ĉ−, and ĉ+ (ĉ†

0, ĉ†
−, and ĉ†

+) are the
annihilation (creation) operators of an atom in the zero, k+ =
kp + kc, and k− = kp − kc momentum states, with associ-
ated energy zero, ω+ = (h̄k+)2/2m, and ω− = (h̄k−)2/2m,
respectively. We define the amplitude of the transverse pump
lattice as VTP = −αsE2

p /4 and the amplitude of the cavity
lattice as Vc = −αsE2

0 . We neglect the dissipation of the
cavity, the contribution of the transverse pump lattice αsE2

p ,
atomic collisions, and the effect of the trapping potential.
Since we work at high magnetic fields, we can write ec · F̂

2F =
mF
2F cos ϕ, where the angle ϕ is shown in Fig. 3. Since the
operator ĉ− creates atoms in the lowest momentum state, we
can obtain the low-energy theory of the system by neglecting
in Eq. (B6) the terms involving the operator ĉ+. Setting ĉ ≡ ĉ−
we obtain the Hamiltonian Eq. (2) in the main text.

Mean-field solution of the two-mode Dicke model. Substi-
tuting the steady-state solution for the cavity fields in Hamil-
tonian Eq. (4) in the main text, we derive the following system
of equations for the spin operators:

˙̂Jx = −ωrecĴy,

˙̂Jy = ωrecĴx − 2η

N Jz,

J̇z = 2η

N Jy,

(B7)

where we defined

η = 4�tλ
2
t

�2
t + κ2

+ 4�dλ
2
d

�2
d + κ2

. (B8)

To find the steady-state value of Jx, we take the steady state

solution Jy = 0 and the further substitution Jz = −
√

N2

4 − J2
x .

In addition to the trivial solution Jx = 0, two roots satisfy the
quadratic equation

J2
x = N2

4

(
1 − ω2

rec

η2

)
(B9)

above the self-organization phase threshold, which is then
given by the condition

1 − 4�tλ
2
t

ωrec(�2
t + κ2)

− 4�dλ
2
d

ωrec(�2
d + κ2)

= 0. (B10)

From Eqs. (B9) and (5) we derive the photon numbers
〈â†â〉 and 〈b̂†b̂〉, after applying the inverse unitary transfor-
mations, Eq. (3). The result of the numerical calculation for
the phase diagram for different angles ϕ is reported in Fig. 5.
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