
 

Can Three-Body Recombination Purify a Quantum Gas?
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Three-body recombination in quantum gases is traditionally associated with heating, but it was recently
found that it can also cool the gas. We show that in a partially condensed three-dimensional homogeneous
Bose gas three-body loss could even purify the sample, that is, reduce the entropy per particle and increase the
condensed fraction η. We predict that the evolution of η under continuous three-body loss can, depending on
small changes in the initial conditions, exhibit two qualitatively different behaviors—if it is initially above a
certain critical value, η increases further, whereas clouds with lower initial η evolve towards a thermal gas.
These dynamical effects should be observable under realistic experimental conditions.
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In ultracold atomic gases, uncontrollable particle loss is
usually associated with mundane and adverse effects, such
as increase of temperature and entropy per particle.
However, it can also have more interesting consequences
[1]. In a 3D weakly interacting homogeneous Bose gas,
one-body loss due to collisions with the background gas in
the vacuum chamber results in the quantum analogue of
Joule-Thomson cooling [3,4]. This is a purely quantum-
statistical effect, with the only role of weak interactions
being to ensure thermalization of the gas. Recently, it was
also observed that in interaction-dominated 1D Bose gases
atom loss led to cooling even though its origin was three-
body recombination, which is traditionally associated with
heating [5]. In these experiments [4,5], losses reduced the
gas temperature, but they still made the samples less
degenerate, because the fractional drop of the degeneracy
temperature, set by the gas density, was even larger.
In this Letter, we show that in a partially condensed,

weakly interacting homogeneous 3D Bose gas, three-body
recombination can result in an intricate dynamical phase
diagram; under certain conditions it can both cool and
purify the gas, i.e., reduce the entropy per particle and
increase the condensed fraction η. An ideal-gas thermody-
namic calculation gives that the evolution of the system
depends on whether η is above or below a critical value
η� ¼ 0.76. For η < η�, the gas cools but η → 0. However,
for η > η� the gas undergoes self-purification and η → 1.
This behavior is a consequence of the interplay of two
quantum-statistical effects—saturation of the thermal cloud
[4,6] and preferential loss of thermal atoms due to boson
bunching [7–10] (see Fig. 1). Purification occurs not just
despite the three-body nature of the loss, but specifically
because of it. Considering the effects of weak two-body

interactions on the thermodynamics, we find a more
complex phase diagram, but qualitatively similar behavior
for na3 < 10−7, where n is the gas density and a the s-wave
scattering length.
These effects could be observed in a homogeneous Bose

gas, produced in an optical box trap [11], near a zero crossing
of a associated with a Feshbach resonance [12]. For both the
saturation of the thermal component and the beneficial
effects of boson bunching for purification, it is important
that the gas is homogeneous, with the condensed and
thermal components completely spatially overlapped [13].
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FIG. 1. Microscopic dynamics of an ideal homogeneous Bose
gas with three-body loss. (a) Saturation-driven cooling. Loss of
atoms from a saturated thermal cloud (at a rate ΓthNth) induces a
flow of zero-energy atoms ( _Nt) from the BEC to the thermal gas,
which lowers the temperature. Direct loss of the BEC atoms
(Γ0N0) has no effect on the temperature. (b) Three-body loss
processes. The rates of three-body collisions between different
numbers of BEC (blue) and thermal (orange) atoms involve
different combinatorial terms, reflecting the boson bunching that
occurs in a thermal cloud but not in a BEC. Normalized by the
appropriate powers of BEC and thermal densities, the relative
rates of the processes (i)–(iv) are, respectively, 1=ð3!Þ, 1=ð2!Þ, 1,
and 1. This preferential loss of thermal atoms can lead to
purification of the gas.
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The gas homogeneity also eliminates the problem of “anti-
evaporation” heating present in harmonic traps [15], where
the density dependent recombination preferentially removes
atoms with below-average energy. We assume that three-
body recombination is the dominant loss process and that
loss products leave the box without undergoing secondary
collisions. At the end of the Letter we discuss how these
requirements can be fulfilled.
To elucidate the key physics, we start with an ideal-gas

calculation, assuming that continuous thermalization is the
only effect of two-body interactions.
In Fig. 1(a) we outline the idea of saturation-driven

cooling. In a partially condensed ideal Bose gas of N atoms
at temperature T, the thermal atom number Nth is saturated
at the critical value for condensation NcðTÞ ∝ Tα, with
α ¼ 3=2, and there are N0 ¼ N − Nc zero-energy atoms in
the Bose-Einstein condensate (BEC). The total energy is
E ∝ NthT ∝ Tαþ1 and the entropy per particle is propor-
tional to the thermal fraction 1 − η ¼ Nth=N [6]. Removing
BEC atoms through some loss process, at a rate we write as
Γ0N0, although Γ0 may not be a constant, does not change
E, Nth, or T. However, removing thermal atoms through
some (same or different) loss process, at a rate ΓthNth,
reduces the energy according to _E=E ¼ −Γth. Since T ∝
E1=ðαþ1Þ and Nth ∝ Eα=ðαþ1Þ depend only on E, we get

_T
T
¼ −

1

αþ 1
Γth < 0 and

_Nth

Nth
¼ −

α

αþ 1
Γth: ð1Þ

Note that _Nth=Nth ¼ −ð3=5ÞΓth ≠ −Γth. To maintain equi-
librium, with Nth saturated, atoms transfer between the
BEC and the thermal cloud, at a rate _Nt, so the net rates
of change of N0 and Nth are _N0 ¼ −Γ0N0 − _Nt and
_Nth ¼ −ΓthNth þ _Nt. Specifically, for every 5 atoms lost
from the thermal cloud, 2 are replenished from the BEC.
This injection of zero-energy particles into the thermal
cloud is the microscopic origin of the cooling.
These arguments are not specific to any particular loss

process. They apply to the three-body loss discussed here
and the one-body loss that drives the quantum Joule-
Thomson effect observed in Ref. [4], and are also at the
heart of the decoherence-driven cooling observed in
Refs. [16,17], although in that case the atoms were not
lost, but transferred to a different spin state.
To see whether atom loss can purify the gas, we calculate

_̄η

η̄
¼

_Nth

Nth
−

_N
N

¼ Γð1 − PÞ; ð2Þ

where η̄ ¼ 1 − η is the thermal fraction, Γ ¼ − _N=N ¼
ðN0Γ0 þ NthΓthÞ=N is the total per-particle loss rate, and
we have introduced a dimensionless purification coefficient

P ≡ _Nth=Nth

_N=N
; so P − 1 ¼ d½lnð1 − ηÞ�

d½lnðNÞ� : ð3Þ

For P > 1 the gas purifies (_η > 0), whereas for 0 < P < 1
it cools without purifying. From Eq. (1), for an ideal gas

P ¼ α

αþ 1

Γth

Γ
¼ 3

5

Γth

Γ
; ð4Þ

so purification requires Γth=Γ > 5=3. Here the nature of the
loss process is crucial. One-body losses do not distinguish
BEC and thermal atoms, so Γth ¼ Γ0 ¼ Γ and P ¼ 3=5.
However, for three-body loss P can be larger than 1.
In general, the local three-body loss rate is given by

_n=n ¼ −g3K3n2; ð5Þ

where g3 is the zero-distance three-body correlation func-
tion and K3 is the three-body loss coefficient. In terms of
local condensate and thermal density, n0 and nth, respec-
tively [7],

g3 ¼
3!

n3

�
1

3!
n30 þ

1

2!
3n20nth þ 3n0n2th þ n3th

�
: ð6Þ

For a uniform gas, where n0=N0 ¼ nth=Nth ¼ n=N ¼ 1=V,
with V being the gas volume, this corresponds to

Γ ¼ K3n2ð6 − 9η2 þ 4η3Þ: ð7Þ

For the sameN and V, the loss rate in a pure BEC (η ¼ 1) is
6 times smaller than in a thermal gas (η ¼ 0), due to
suppression of boson bunching [7,8]. More generally, the
four terms on the right-hand side of Eq. (6) correspond, left
to right, to the four loss processes (i)–(iv) in Fig. 1(b).
Considering how many thermal and BEC atoms are lost in
each process and keeping the same order of terms as in
Eq. (6):

Γ0N0 ¼ K3ðN3
0 þ 6N2

0Nth þ 6N0N2
th þ 0Þ=V2;

ΓthNth ¼ K3ð0þ 3N2
0Nth þ 12N0N2

th þ 6N3
thÞ=V2;

corresponding to

Γ0 ¼ K3n2ð6 − 6ηþ η2Þ;
Γth ¼ K3n2ð6 − 3η2Þ: ð8Þ

Finally, inserting Γ and Γth into Eqs. (1), (2), (4), we
obtain
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_T
T
¼ −K3n2

6

5
ð2 − η2Þ;

_̄η

η̄
¼ −K3n2

4

5
ð−3þ 9η2 − 5η3Þ;

P ¼ 9

5

2 − η2

6 − 9η2 þ 4η3
: ð9Þ

We see that P depends only on the condensed fraction η.
As shown in Fig. 2, it monotonically grows from 3=5 at
η ¼ 0 to 9=5 at η ¼ 1 [18]. For very small η, from N ≈ Nth
it directly follows that Γ ≈ Γth and P ≈ 3=5. In this regime
also Γ0 ≈ Γth ≈ 6K3n2th. Microscopically, in this regime the
two dominant processes in Fig. 1(b) are (iii) for the loss of
BEC atoms and (iv) for the loss of thermal ones. These
involve at most one BEC atom and hence have the same
combinatorial factors, so Γ0 ≈ Γth, and we essentially get
the quantum Joule-Thomson effect [4], although driven by
three-body loss. In the opposite limit η ≈ 1, where N ≈ N0

and Γ ≈ Γ0, the two relevant processes in Fig. 1(b) are (i)
and (ii), which have different combinatorial factors, such
that Γth ≈ 3Γ0 ≈ 3Γ, giving P ≈ 9=5.
Crucially, P − 1 changes sign at a critical condensed

fraction η� ¼ 0.76; this is the only physical solution
(satisfying 0 ≤ η ≤ 1) to the cubic equation obtained by
setting _̄η ¼ 0 in Eq. (9). As indicated by the arrows in
Fig. 2, for η < η� the gas cools but η → 0, while for η > η�
the gas keeps self-purifying and η → 1. This is illustrated in
the inset of Fig. 2, where we show the evolution of the
thermal fraction for different initial condensed fractions.

On this log-log plot, P − 1 gives the slope of the η̄ðNÞ
trajectories; see Eq. (3).
These ideal-gas effects should play a dominant role if the

interaction energy is small compared to the thermal one.
Within mean-field theory (see below), for small thermal
fraction the ratio of thermal to interaction energy is
≈0.4η̄5=3=ðna3Þ1=3 [6], so the two are comparable for
η̄ ¼ ðna3Þ1=5.
We now quantitatively assess the effects of weak two-

body interactions on three-body cooling and purification,
for na3 ≲ 10−5 (see Fig. 3). In this regime, to a good
approximation, interaction energy is mean-field like, g3 is
ideal-gas like [7,10], and the saturation picture holds [19].
We also assume that the thermal excitations are particlelike,
which is a good approximation for most of the range of
system parameters we consider (see dashed line in Fig. 3).
The total energy is now

E ¼ α0NthkBT þ g
2V

ðN2
0 þ 4N0Nth þ 2N2

thÞ: ð10Þ

Here α0 ¼ αζðαþ 1Þ=ζðαÞ ¼ 0.77, where ζ is the
Riemann function, and g ¼ 4πℏ2a=m, where m is the
atom mass.
A subtle question is how much interaction energy is

removed from the gas through atom loss. Let us first
consider an initially pure BEC, with E ¼ gN2

0=ð2VÞ. For
the BEC to stay pure after removal of a particle, the energy
removed would have to be μ ¼ ∂E=∂N0. This would
correspond to removing a particle adiabatically from a

FIG. 2. Three-body cooling and purification of an ideal
partially condensed homogeneous Bose gas. The purification
coefficient P (see text), which determines whether the gas
purifies (P > 1) or cools without purifying (0 < P < 1), depends
only on the condensed fraction η. The critical value η� ¼ 0.76
(indicated by the red dot) defines a “bifurcation point” for the
evolution of the cloud. As indicated by the arrows, for η < η� the
condensed fraction keeps dropping, but for η > η� the gas self-
purifies and η → 1. The horizontal dashed line, P ¼ 3=5,
corresponds to the result for one-body loss, which cannot purify
the gas. Inset: evolution of η for different initial conditions; here
Ni is the initial atom number.

FIG. 3. Cooling and purification in a weakly interacting gas.
The purification coefficient P now depends on the condensed
fraction η and the gas parameter na3. The evolution of the system
is described by trajectories that flow either to η ¼ 1 or to η ¼ 0,
depending on which side of the critical trajectory η�ðna3Þ (red
line) they are. On this log-log graph the slope of the trajectories is
given by P − 1 [see Eq. (3)] and the background shading
indicates whether instantaneously the gas purifies (green), cools
without purifying (blue), or heats (white). In the regime below the
dashed line, which corresponds to kBT ¼ 2gn, the dynamics
could deviate from our results due to phononic nature of the
thermal excitations.
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delocalized wave function. In contrast, a sudden local atom
loss should simply remove the average energy per particle,
E=N0 ¼ μ=2. The gas is then left with total energy larger,
by μ=2, than that of a pure BEC with N0 − 1 atoms, so this
loss leads to heating. The next conceptual step is to extend
this analysis to nonzero T. We rewrite Eq. (10) as

E ¼
�
g
V

�
1

2
N0 þNth

��
N0 þ

�
α0kBT þ g

V
ðN0 þNthÞ

�
Nth

and interpret the terms in square brackets as the energy per
BEC atom, ε0 (left bracket), and the energy per thermal
atom, εth (right bracket), in the sense that the rate of energy
change should be

_E ¼ −ε0Γ0N0 − εthΓthNth: ð11Þ

Under continuous equilibration it must also be

_E ¼ ∂E
∂N0

ð−Γ0N0 − _NtÞ þ
∂E
∂Nth

ð−ΓthNth þ _NtÞ; ð12Þ

where _Nt is such that Nth remains saturated, and it can now
in general be of either sign. Combining these equations
gives the purification coefficient P, a generalization of
Eq. (9), which now depends on two dimensionless param-
eters, η and na3:

P ¼ 9ð2 − η2Þ þ b1ðηÞðna3Þ1=3
5ð6 − 9η2 þ 4η3Þ þ b2ðηÞðna3Þ1=3

; ð13Þ

where b1ðηÞ¼γð7η4−20η3þ12η2þ12η−12Þð1−ηÞ−5=3
and b2ðηÞ ¼ 2γηð6 − 9η2 þ 4η3Þð1 − ηÞ−2=3, with γ ¼
2ζð3=2Þ5=3=ζð5=2Þ ¼ 7.4.
In Fig. 3 we show examples of trajectories ηðna3Þ for

fixed (arbitrary) a. The red-colored trajectory separates
those that flow to η ¼ 0 and η ¼ 1. The background
shading indicates whether the gas instantaneously purifies
(P > 1), cools but does not purify (0 < P < 1), or heats
(P < 0) [20].
At low thermal fraction η̄, the constant-P contours in

Fig. 3 follow the scaling η̄ ∝ ðna3Þ1=5, meaning that P is
determined by the ratio of thermal and interaction energies.
Qualitatively, affinity between particles (due to quantum
statistics) leads to cooling, while aversion (due to repulsive
interactions) leads to heating, similarly to how Joule-
Thomson rarefaction leads to cooling of attractive classical
gases and noninteracting bosons, and heating of repulsive
classical gasses and noninteracting fermions [3,4]; here,
each of the two opposing effects dominates in a different
regime. The P ¼ 0 contour is η̄ ≈ ðna3Þ1=5 all the way to
na3 ¼ 10−5, while the purification effect is less robust in
presence of two-body repulsion, but is still possible for
na3 < 10−7. Also note that a system trajectory cannot leave

the purification region P > 1, but can enter it because
losses reduce na3. We have considered particlelike exci-
tations, while phononic excitations will dominate the
system’s evolution for small T=ðgnÞ ∼ ðη̄=

ffiffiffiffiffiffiffiffi
na3

p
Þ2=3, below

the dashed line in Fig. 3.
Our theory could be tested near a zero crossing of a,

associated with a Feshbach resonance, where K3 is nonzero
and nearly a-independent. For illustration, we assume
K3 ≈ 10−29 cm6=s, as observed in, e.g., 7Li [21] and 39K
[22], initial n ¼ 1014 cm−3 and η ¼ 0.9, and a ¼ 10a0,
where a0 is the Bohr radius. For these parameters,
na3 ¼ 1.5 × 10−8, our calculation gives P > 1 (see
Fig. 3), and Γ ≈ 0.1 s−1 would be sufficiently large to
dominate over the one-body loss rate, which is in many
experiments < 0.01 s−1. The healing length would be
ξ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πn0a

p
≈ 1 μm, so in a box of size L≳ 10 μm

the BEC would be essentially homogeneous and occupy
the same volume as the thermal gas. The mean free path
would be l ¼ 1=ð8πna2Þ ≈ 1 mm, so secondary collisions
of the loss products should be negligible. Finally, for
continuous thermalization we want Γ2 > 3 _T=T [23], where
Γ2 ≈ η̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBT=ðπmÞp

8πna2 (for small η̄) is the per-particle
rate of elastic two-body collisions, and _T=T ¼ PΓ=α ≈ Γ
from Eqs. (3), (13). This final requirement would be
marginally satisfied in a 39K gas, and very comfortably
in a 7Li one. We note that the initial n we assume is a few
times larger than what was already achieved in box traps,
but is not unrealistic.
In conclusion, we have shown that, under realistic

experimental conditions, three-body recombination can
both cool and purify a homogeneous Bose gas. We have
calculated a dynamical phase diagram which shows that
the behavior of the system can be qualitatively altered by
small changes in the initial conditions. An interesting
extension of this work would be to investigate the regimes
of stronger interactions and/or very low thermal fractions,
where the phonon nature of the excitations plays a role,
thus connecting our study with the analysis performed in
Refs. [5,24].
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