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We investigate a Bose-Einstein condensate strongly coupled to an optical cavity via a repulsive optical
lattice. We detect a stable self-ordered phase in this regime, and show that the atoms order through an
antisymmetric coupling to the P band of the lattice, limiting the extent of the phase and changing the
geometry of the emergent density modulation. Furthermore, we find a nonequilibrium phase with repeated

intense bursts of the intracavity photon number, indicating nontrivial driven-dissipative dynamics.
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Strong coupling between ultracold matter and quantized
light fields can be achieved by placing a quantum gas in a
high-finesse optical cavity. Their interplay generates non-
linear atom-field dynamics that forms the basis for exploring
collective many-body phenomena at the interface between
quantum optics and condensed matter physics [1-11]. A
central phenomenon in this approach is the self-organization
of a Bose-Einstein condensate (BEC) in a cavity mode [12],
when the atoms are illuminated from the side by a red-
detuned, attractive standing wave pump lattice. Above a
critical lattice depth, the particles are dragged into the
intensity maxima of an emerging interference potential,
thereby maximizing the scattering from the pump lattice to
the cavity mode. The self-organization process is a second
order phase transition at which the atoms reduce their
potential energy in the modified potential landscape by a
larger amount than the kinetic energy cost of the additional
crystalline structure. This self-consistent ordering of atoms
and light has become an experimental model system for
driven-dissipative quantum phases [12-21].

Theoretical studies have made predictions for possible
self-ordered phases in a parameter regime where a quantum
gas is coupled to a cavity via a blue-detuned optical lattice,
which repels atoms from the intensity maxima [22-25].
Naively one could expect that self-organization is prohib-
ited, since the buildup of any additional repulsive potential
seems to cost energy. However, since the light field
scattered by the atoms into the cavity is out of phase from
the pump lattice field, destructive interference occurs at the
position of the atoms. This carves out parts of the repulsive
pump lattice potential, lowers the potential energy, and
makes self-organization also possible for a blue-detuned
pump (see Fig. 1). In such a configuration, limit cycles and
chaos were recently predicted [22,24,26,27] and connected
to dynamic phenomena such as time crystals [28].
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Experiments, however, have so far been limited to the
case of red-detuned, attractive pump fields. In this Letter we
report on self-organization with a repulsive optical lattice
and identify the parameter regime for a stable phase,
both experimentally and theoretically. We further discover
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FIG. 1. (a),(b) We prepare a BEC of ®’Rb atoms in the initially
unpopulated mode of an optical resonator, and expose it to a
repulsive optical lattice (blue) localizing the atoms (red) in the
field minima. (c) Populating the cavity mode with photons can
become energetically favorable for the system because interfer-
ence between the pump and the cavity fields gives the atoms more
space to expand close to the nodes of the total field. The atoms
form a Bragg grating that allows scattering into the cavity mode.
Photons leaking from the cavity are detected. (d) The atoms
recoil and acquire momentum (red arrows) from scattering
photons (blue arrows). These momenta are +k_ = +(k. — k)
(upper processes) and +k = £(k. + k,) (lower processes).
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experimentally a dynamic region, where the intracavity
light field shows repeated pulses.

Our experimental setup is depicted in Fig. 1(a). The
experiments start with the creation of a BEC of N =
2.7(1) x 10° #Rb atoms by optical evaporation in a crossed
dipole trap [29]. The BEC is placed in the mode of an
optical resonator with a decay rate of k = 2z x 147(4) kHz
and atom-cavity coupling g, = 2z x 1.95(10) MHz. We
apply the pump lattice beam to the atoms at an angle of
60(1)° with respect to the cavity mode. The lattice depth V,
is ramped up linearly over time in 50 ms from 0 to 17(1)
E.., where E,.. = 2nh x 3.77 kHz and # is the reduced
Planck’s constant. The pump beam has a wave vector k,, =
(27/A)x with wavelength 2 = 780.1 nm, and correspond-
ing frequency w,,. It is blue detuned by A, = w, —w, =
27 x 76.6(1) GHz with respect to the D2 line of ’Rb at ,,
(see [29] for the effect of changing A,), and detuned by
A. =w, — . with respect to the resonance . of the
cavity mode with wave vector k.. We detect photons
leaking from the cavity with a single-photon counting
module and convert the detection rate to an intracavity
lattice depth. We use this cavity lattice depth as the order
parameter of the phase transition.

Repeating this experiment for different cavity detunings
A, we construct the phase diagram of the system as shown
in Fig. 2(a). Blue regions indicate finite mean intracavity
photon numbers which we identify with a self-ordered
phase. For small lattice depths V, and in the vicinity of
A, =0, the phase boundary is approximately linear. Its
slope changes for increasing lattice depth, forming a tip of
the self-organized phase at a finite cavity detuning
A, =~ =27 x 3 MHz, from where the phase boundary bends
up again and converges towards A, = 0 for large pump
lattice depths. This is in stark contrast to the case of a red-
detuned pump lattice (A, < 0), where the phase boundary
is monotonic such that a phase transition to the self-ordered
phase exists for any A, < 0 [12]. For finite positive A, we
observe a self-ordered phase which however also disap-
pears towards higher pump lattice depths, followed by a
few lines in the phase diagram. In the red-detuned case, no
self-organization is observed for positive A. due to the
opposite sign of the dispersive shift.

Absorption images after ballistic expansion of the atoms
reveal their momentum distribution. In the normal phase,
the atoms are localized in the nodes of the pump lattice
[Fig. 2(b)]. In the self-ordered phase, the atoms acquire a
strong density modulation in the direction k_ =k, —k,
[Fig. 2(c)]. This modulation has twice the pump lattice
periodicity (1) due to the chosen angle of 60° between
pump and cavity. The qualitative experimental results,
however, do not depend on this choice. In real space, this
corresponds to a Bragg grating scattering photons from
the pump into the cavity. While four different scattering
processes are possible as depicted in Fig. 1(d), mostly the
scattering processes populating the momenta at +k_ occur
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FIG. 2. Self-organized phase with a repulsive pump. (a) Phase
diagram showing the intracavity lattice depth as a function of
pump lattice depth and cavity detuning. A self-ordered phase with
limited extent, identified by a finite lattice in the cavity, can be
identified. The dotted lines are the phase boundaries obtained
from numerical mean-field calculations. The deviation from the
data can be attributed to finite temperatures [29]. Insets display
atomic momentum distributions for a pump lattice of 3.0(2)E .
recorded with absorption imaging after ballistic expansion.
(b) For A, = =27 x 4.0(1) MHz, the system is in the normal
phase with momentum components at 0 and +2#k,. In real
space, this distribution corresponds to the density modulation of
the pump lattice with 4/2 spacing. (¢c) At A. = 0, the system is
self-organized, and the atoms assume a 1D density modulation
with 4 spacing with momentum components +#(k. —k,). Both
the pump lattice modulation at +2#k, and the recoil from
the other scattering process at +h(k, +k,) [see Fig. 1(d)] are
suppressed.

[upper graphs in Fig. 1(d)], and the processes populating the
momenta at k. = £(k. + k) are suppressed. In the self-
ordered phase also the density modulation by the pump
lattice is suppressed because of the destructive interference
reducing the pump potential, as can be seen by the decreased
population of the +-27k, momenta in Fig. 2(c) compared to
Fig. 2(b). Again, this is in contrast to the case of a red-
detuned pump lattice, where all possible momentum states
are macroscopically populated.

These observations can be understood from analyzing
the Hamiltonian of the atom-cavity system consisting of the
following five terms [30]:

A

FL= Py, + Pl + FR™ + B + G (1)

The atoms self-order when the scattering of photons
lowers the energy of the system, i.e., when the gain in
potential energy exceeds the energy cost of cavity photons,

ﬂph = —hA.a"a, plus the kinetic energy cost caused by
recoiling atoms, Hyq, = (p2/2m). Here, A, is the detuning
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FIG. 3. Finite extent of the self-organized phase. (a) Cut through the phase diagram for A, = —27 x 2 MHz showing the cavity lattice

depth rising from and returning to 0. (b) The atoms (gray) get localized to the nodes of the repulsive standing wave field (black) along the
x direction. Taking the atomic density maxima as origin of the coordinate system, the coupling term with the double period (blue) turns
into a sine. It thus couples to a state of opposite symmetry, as indicated. (c) This opposite-symmetry state lives in the P band of the pump
lattice. With increasing pump lattice depth, the coupling term leads to a mode softening at wave vector k_ = k. — k,, (pale blue lines),
and finally to self-organization. At the same time, the increasingly deep pump lattice increases the energy of the P band (blue arrows).
For deeper lattices, this effect becomes dominant and leads to the end of the self-ordered phase.

of the pump frequency relative to the cavity resonance, a'
and a create and annihilate cavity photons, respectively, p
is the atomic momentum operator, and m the atomic mass.
The potential energy has the three terms

H® =V cos?(k, - 7). (2)
Ho™ = Uptt'acos? (k, - 7), ®)
Hoa™ = \/V,Ug(a + ") cos(k, - #) cos(k, - ),  (4)

where Uy = 0.012E,. is the dispersive cavity shift per
atom.

Equation (4) describes the coupling of the pump lattice to
the light field of the cavity and the atomic density. This
leads to a polariton mode, a coupled excitation of the cavity
light field and the atomic density at momenta k. With
increasing pump lattice depth, its energy is reduced [31].
The polariton mode softens and approaches zero energy at
the critical point, manifesting a continuous phase transition.

Although Eq. (4) couples equally to the k_ and k, modes,
there is a strong imbalance between their populations in the
self-ordered phase [Fig. 2(c)] for two reasons. The first is the
difference in their respective kinetic energies of 1 E.. and
3E,.., respectively. The second, more intricate one is
that Egs. (2) and (3) have finite matrix elements coupling

the two modes with (k_|(FPe™ + Fise ™) k) o 1/A,. For
A, > 0, a population of both modes increases the total
energy of the system and is thus disfavored, opposite to the
case of A, < 0.

The finite extent of the self-ordered phase for large pump
lattice depths and negative cavity detunings [Figs. 2(a) and
3(a)] can be explained with a symmetry argument [see
Fig. 3(b)]: For deep lattices, the atoms in the ground
state localize in the minima of the potential in Eq. (2)

o cos?(k,, - r), which for A, > 0 are located at the nodes of
the light field. The maxima of the atomic density distri-
bution are thus shifted by 1/4 with respect to the pump
lattice. Accordingly, taking the atomic density maxima as
the origin of the coordinate system, the coupling term in
Eq. (4) becomes « sin(k, - r). Being an odd operator, it
couples the atoms in the ground state to a state of opposite
parity. Because of its opposite symmetry, this state is in the
P band of the pump lattice and localized at the maxima of
the pump potential. As we ramp up the pump lattice, the
coupling that leads to the mode softening is enhanced [pale
blue lines in Fig. 3(c)], enabling self-organization. But with
further increasing pump lattice depth, the band gap
increases (blue arrows), which pushes the system out
of the self-ordered phase again. The phase boundaries
arise from the competition between band gap and mode
softening.

The above arguments are confirmed by going to the
mean-field limit of Eq. (1) and solving the steady-state
equations in perturbation theory [29]. We find the criterion
for superradiance for N atoms

ANU,A
1<¢

5
A2 42 )

Vp)(sp(vp)v

where we defined the dispersively shifted cavity detuning
A,=A,—NU,/2 and the single-particle response function

Z [ {w

Y (k)|
(
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Y (k)

0
XV ‘( (6)

1;/5,0) (k) are the unperturbed Bloch wave functions in the n
th band of the pump lattice with eigenenergies EY,

and © = cos(k, - #) cos(k, - ).
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Taking into account only the two lowest bands and
taking the limit of weak lattices we can evaluate [29]

1% 1%
Po(1-—-2-). (7)
3E‘I’CC 8Erec

This function first rises to a maximum value at V, = 4E,,
which can be enough to enter the self-organized phase
depending on A, but then decreases leading to the end of
the self-ordered phase. This reproduces the form of the
lower edge of the ordered phase in Fig. 2(a). This is very
different from the familiar self-organization for A, < 0,

for which the pump lattice—coupling the BEC to the
lowest band—reduces the bandwidth E <10) (k) - E (10) (0) and

increases the overlap |<l//50> (k) |€:)|1//50> (0))|* and thus works
in favor of, rather than against, self-organization. The
repulsive nature of the potentials and the band effects
counteracting the mode softening lead to a marginal energy
difference between the normal and the self-ordered phase.
This energy gain of the ordered phase goes down with
detuning so that finite temperatures shift the lower tip in the
phase diagram up [cf. theory lines in Fig. 2(a) and see [29]
for data].

Qualitatively different behavior arises for A. > 0 in
Fig. 2(a), where we find striking dynamical effects. With
increasing pump strength the system enters the self-ordered
phase, but then the cavity photon number spikes and the
order parameter vanishes. This process reoccurs several
times. To disentangle pump from time dynamics, we
perform quench experiments in which we ramp up the
pump lattice depth at fixed A, =2z x—10 MHz in
the nonorganized phase. We then jump the detuning to
the parameter region of interest, and subsequently, keeping
pump and detuning constant, record the time evolution of the
cavity field. Figure 4(a) shows an exemplary trace outside
the stable self-ordered phase at A, =2z x2.0(1) MHz
and V, = 4.1(2)E,... We observe repeating pulses with a
duration of 3(1) us and a cavity lattice depth of 32(17) E .,
much deeper than the pump lattice, appearing after an initial
buildup time. Taking absorption images of the atomic
momentum distribution within a millisecond of a spike
reveals the population of very high momentum states
[Figs. 4(b) and 4(c)], as expected for deep lattices. The
timescale of buildup and decay of the cavity field spikes is
consistent with our cavity decay rate k = 27z x 147(4) kHz.
We find the same behavior everywhere between the boun-
dary of the steady-state phase and A, = NU,/2, leading to
the schematic phase diagram of Fig. 4(d).

A basic understanding for the appearance of dynamic
features for 0 < A, < NU,/2 can be gained by neglecting
dissipation for the moment and considering the free energy
landscape of the system. Figure 4(e) shows the numerically
obtained free energy as a function of the cavity field (&) for
A, = 27 x 2 MHz and a precritical pump power. The term
—A.a'a in Eq. (1) indicates that the system can lower its
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FIG. 4. Superradiant dynamics. (a) Time trace of the cavity
lattice depth after a far-detuned ramp-up of the pump to 4.1E,.
and a subsequent jump of detuning from A, = 27z x —10 MHz to
A. =27 x2 MHz at time 0. The difference in spike heights
stems from the finite photon count rate at which the single photon
counting module saturates [29]. The gray bar indicates the
estimated uncertainty. (b),(c) Momentum distribution from ab-
sorption imaging after ballistic expansion after a photon spike in
the cavity-pump-plane [xy, (b)] and an orthogonal plane [xz, (c)].
Very high momenta up to £207k, are visible, possibly limited by
the aperture of the imaging system. (d) Schematic phase diagram
with stable and dynamic regions. (e)—(g) Numerical calculations
of the free energy per atom as a function of the cavity photon field
for A, = 2z x 2 MHz and pump lattice depths of 0.2E .. (normal
phase with local minimum at (@) = 0), 3.4E,. (self-ordered
phase with local minima at a finite photon number) and 13 E .,
(spike region, no local minimum).

energy in the rotating frame with more photons, but the
local minimum at (a) = 0 keeps the system in the normal
phase. With increasing pump power, local minima at
finite cavity fields develop and the atoms self-organize
[Fig. 4(f)]. Uniquely for A, > 0 [29] and in contrast to the
case A, < 0, here the self-organized state is metastable. In
fact, deeper in the phase the small energy barrier shrinks
and is eventually overcome [Fig. 4(g)]. Thus the system
leaves the metastable state, suddenly increasing the photon
number in the cavity.

Termination and cyclic repetition of the pulses may be
qualitatively understood from the dynamic dispersive shift
that depends on the overlap between cavity mode and
atomic wave function. The strong localization of the
atoms at the nodes of the cavity mode during a spike
can reduce the dispersive shift until the effective cavity
resonance is crossed, terminating self-ordering. The cavity
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mode empties and the process repeats until heating of the
BEC and atom loss finally stop the process. A theoretical
description of the observed complex time dynamic phe-
nomena requires a master equation approach, which goes
beyond the scope of this work.

We demonstrated the existence of stable and dynamic
self-ordered phases of a Bose-Einstein condensate coupled
to a high-finesse optical cavity mode via a repulsive optical
lattice. A theoretical description of the phase boundaries
revealed that an antisymmetric coupling to the P band of
the pump lattice induces self-organization. This different
lattice geometry for A, >0 could further lead to a
qualitatively different coupling behavior in two- or multi-
mode scenarios [17,32]. The observed cyclic repetition of
pulses appears qualitatively in the phase diagram where
limit cycles, chaos, and time crystal behavior were theo-
retically predicted in related models [26-28]. We presented
a novel approach for experimentally and theoretically
exploring time dynamics in driven-dissipative systems
[33-39].
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