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Abstract

®

CrossMark

Quenching an ultracold bosonic gas in a ring across the Bose—FEinstein condensation phase
transition is known, and has been experimentally observed, to lead to the spontaneous
emergence of persistent currents. The present work examines how these phenomena generalize
to a system of two experimentally accessible explicitly two-dimensional co-planar rings with a
common interface, or to the related lemniscate geometry, and demonstrates an emerging
independence of winding numbers across the rings, which can exhibit flow both in the same
and in opposite directions. The observed persistence of such findings in the presence of
dissipative coupled evolution due to the local character of the domain formation across the
phase transition and topological protection of the randomly emerging winding numbers should

be within current experimental reach.

Keywords: atomtronics, persistent currents, Bose—Einstein condensation, quantum gases,
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1. Introduction

At the critical point of a second order phase transition, the sym-
metry of a system is spontaneously broken, with both relax-
ation time and correlation length diverging [1]. In the transition
region, the resulting state is not perfectly ordered, rather build-
ing a mosaic pattern of frozen coherent domains, with defects
spontaneously emerging at their boundaries, thus becoming
embedded within the system’s growing coherent global state.
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The study of emerging defect dynamics and their subsequent
relaxation has been a topic of active research over the course
of many years.

This effect was first discussed by Kibble in a cosmolog-
ical context, setting an upper bound on the domain regions
[2]. Zurek extended this by quantifying the emerging domain
size on the basis of the universality of critical slowing down
[1]. Consideration of the role of the quench timescale in
finite-duration and linear quenches led to the universal Kib-
ble—Zurek mechanism, which has been observed in a variety
of complex systems [3], including liquid crystals [4], liquid
helium [5, 6], superconducting loops [7—10], ion chains [11],
Bose—Einstein condensates (BECs) [12-21], and, recently, in
Rydberg lattices [22]. In ring geometries, like the original

© 2020 The Author(s). Published by IOP Publishing Ltd Printed in the UK
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configuration considered by Zurek [1], the frozen phase of
the wave function may lead to emergence of a supercurrent
of integer topological charge ¢, i.e. a 2g phase winding along
the ring. The focus of numerous previous studies has been to
show how the supercurrent charge scales with the quench time
through the phase transition [8—10, 17, 23, 24], thus verifying
the applicability of the Kibble—Zurek scaling law. In particu-
lar, the numerical work of reference [23] provided a detailed
visualization of, and highlighted, the role of local phase forma-
tion and subsequent evolution to a stable persistent current in
the context of a one-dimensional model. Although such Kib-
ble—Zurek scaling only applies to finite duration quenches,
the underlying phenomenon of spontaneous symmetry break-
ing and generation of defects are at the heart of any crossing
through a second-order phase transition, also including the
numerically simpler instantaneous quenches, which provide
crucial information for the formation dynamics of coherence
in macroscopic systems and on the critical universal properties
of the system.

Dynamical quenches (whether instantaneous or gradual)
are in fact a critical ingredient of envisaged circuits in the
emerging field of atomtronics, a highly-promising interdis-
ciplinary field at the interface between matter-wave optics
and the photonics/semiconductor technologies [25, 26], which
has also been suggested as a potential platform for quantum-
information devices, such as qubits [27]. The primary goal
of atomtronics is to use the precise control, admitted by
the ultracold quantum matter, to generate highly coherent
circuits of neutral atoms, which are analogous to conven-
tional solid-state systems, but with the potential to offer much
improved and/or otherwise inaccessible technological appli-
cations [28, 29]. Available atomtronic circuits include, in par-
ticular, variable-resistance RLC schemes [30-32], Josephson-
junction SQUIDs [33-36], and diodes [37].

In this work, we explore the formation and structure of
spontaneously generated supercurrents induced by an instan-
taneous crossing of the phase transition to the BEC state
in a co-planar, side-by-side, double-ring geometry. This set-
up has been chosen as a cold-atom analogue of a qubit
made from adjacent superconducting loops, known as the
Mooij—Harmans qubit [38—40]. Its operation relies on the
use of coherent quantum-phase slips to coherently transport
vortices through Josephson links. A theoretical proposal to
implement this phenomenon in two-component quantum gases
has been made [41], with Rabi coupling driving the phase
slips with experimentally accessible spinor two-component
gases [42] constituting a potential platform for such work.
Gaining control over the tunnelling of persistent currents in
a double-ring geometry would closer emulate the geome-
try of the original theoretical scheme. Recently, several pro-
posals for two parallel/stacked rings have shown that the
winding number can tunnel between rings due to the cre-
ation of fluxons at their boundary [43, 44], and at the single-
particle level persistent current tunnelling has been predicted
between arrays of adjacent rings and in similar configurations
[45-48].

The aim of this work is to explore the full two-dimensional
(2D) formation dynamics of spontaneous supercurrents in such

a side-by-side geometry, and demonstrate the resulting (per-
haps somewhat counter-intuitive) independence of the two
connected rings, despite their density overlap and coupled
dynamics. After presenting our model, in the form of the com-
monly used stochastic projected Gross—Pitaevskii equation
(SPGPE) in section 2, we analyze the formation of persis-
tent currents in the double-ring trap geometry (section 3),
and discuss the distribution of observable persistent-current
states. We then explicitly demonstrate how the double-ring
setting can be reduced to that for two independent 2D annuli
(section 4): doing so, we are able to draw analogies to Zurek’s
arguments, and also demonstrate the extension of previous
1D SPGPE single-ring simulations to an explicitly 2D set-
ting. Our findings for the double-ring structures are shown to
be robustly insensitive to details of the geometry, by explic-
itly verifying the findings in the lemniscate (figure-of-eight)
configurations in section 5. Identifying regimes which are
optimal for experimental observation paves the way for the
use of such geometries for the design of potential qubit
operations.

2. The theoretical model

Quench dynamics in quantum gases are well modelled by the
above-mentioned stochastic (projected) GPE, which provides
a numerically tractable effective field theory for low-lying
‘coherent’, or ‘classical’ modes of the system. First proposed
in [49] to study the experimentally-observed reversible cross-
ing of the BEC phase transition [50], it was developed inde-
pendently with the addition a projection procedure in order
to separate ‘coherent’ and ‘incoherent’ constituents of the
dynamics [51-54]. This approach has become the workhorse
for modelling the condensate formation across different plat-
forms [13, 20, 23, 55-71]. These include a number of sim-
ulations explicitly performed in a ring trap geometry [23,
62, 66], of direct relevance to the present analysis. Specifi-
cally, 1D SPGPE simulations by Das et al [23], under con-
trolled finite-duration quenches to condensation from noisy
initial conditions, revealed very clearly the local character of
the formation of phase, and its long-term dynamics leading
to the spontaneous formation of persistent currents (in agree-
ment with Kibble—Zurek). The same model was used to study
spontaneous Josephson vortex formation across two linearly-
coupled 1D ring traps [63]. In 2D rings, vortex decay and
persistent-current formation were considered in the presence
of external stirring [62], closely matching experimental data
[72], while spontaneous emergence of persistent currents in 2D
ring traps was discussed in reference [66], as a limiting factor
in the study of controlled generation and stability of counter-
propagating dark soliton pairs. As the SPGPE models the
dynamics of the condensate and low-lying modes of the clas-
sical field v (r, 1), it does not include purely quantum effects
like entanglement between persistent current states, which
should be kept in mind when considering future atomtronic
applications.

In our current implementation, building on our earlier
works [20, 65, 70, 71], individual trajectories in the coherent
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sector of the dynamics are governed by the stochastic equation
of motion [54],

ih S w0 =P {0~ i) [Fop — ] w0 + o)}
M

describing their coupling to the incoherent sector, where

. 2
Hep = —EVZ + Vext(r) + gop|t(r, D[, 2)

is the Gross—Pitaevskii operator, and m is the atomic mass of
87Rb atoms. Here, gop = V8rha, /ml, is the two-body inter-
action strength in the two-dimensional (2D) geometry, deter-
mined by the s-wave interaction strength as, i is the chem-
ical potential, and I, = /h/mw, is the transverse confine-
ment scale imposed by the harmonic-oscillator trap V(z) =
mw?z? /2. In our explicitly 2D study, we adopt tight trans-
verse confinement w, = 27 x 1000 Hz, in order to explicitly
satisfy the quasi-2D condition fw, > p. The complex Gaus-
sian noise is characterized by correlations (n(r, )n(r’, 7)) =0
and (n*(r, (', 1)) = 2vhkgTo(r — r')0(t — ¢'), where T is
the bath temperature, v is the growth rate, and the aster-
isk stands for the complex conjugate. In this work, we fix
~v = 0.05, and conclude via numerical testing that our steady-
state results are insensitive to the exact value of v, a state-
ment which we have explicitly numerically confirmed here
in the range 0.001 < v < 0.2, which constitute values con-
sistent with both theoretical expectations [53, 54] and previ-
ous successful comparisons to experiments [20, 62, 70, 71].
Projector P implements the energy cut-off, ensuring that the
occupation of the largest included mode has average occupa-
tion of order unity. The energy cut-off is adopted as eq, (i, T) =
ksTlog(2) + p—derived by setting the Bose—Einstein distri-
bution f{e.,) = 1 and solving for €., [73]—setting the spatial
numerical grid for simulations with spacing Ax < 7/+/8 mecy
[53]. The kinetic energy for a winding number n,, around a ring
of radius R is given by i’n? /2mR?, thus for the parameters we
consider here the adopted energy cut-off limits the winding
numbers to |n,,| < 80, far beyond the range we address in this
work.

Focussing on experimentally relevant geometries for 3’Rb
atoms (m = 1.443 x 10~ kgand g = mgop/h*> = 0.077), we
fix the chemical potential ;. = 25kg nK and temperature 7' =
10 nK, chosen to be much lower than the critical temperature
of the Berezinskii—Kosterlitz—Thouless (BKT) transition (in
the thermodynamic limit) [74],

T
ksg log (C/g)’

where C ~ 13.24+0.4 [75]. In our parameter range, this
amounts to 7/ Tyt ~ 0.05, i.e. an essentially low-temperature
setting.

To simulate the quench-induced dynamics, we simulated
equation (1) using the software package XMDS [76], starting
from initial condition v (x,y) = 0, with a random realization
of the initial noisy field n(x,y), which is devoid of any phase
coherence. This is akin to an input condition with N atoms,
all with the initial energy larger than the cut-off energy e.y,

3)

0 —
TBKT -

which enter the cut-off region at a rate governed by ~ until
the gas reaches thermal equilibrium (actual values of N are
given below). This can be seen as an instantaneous thermal
quench (cooling) from 7 > Tgyr to T = 10 nK < Tgyr. To
confirm the broad validity of our findings, we have also explic-
itly verified that temperature quenches from pre-formed equi-
librated 2D thermal clouds at temperatures 7 > Tggy (rather
than from an initial noisy condition) yield the same qualitative
findings and practically identical long-term winding number
combinations (histograms; see subsequent figure 3(b)).

3. Instantaneous quench in the double-ring
geometry

We consider the in-plane side-by-side double-ring (dr) config-
uration shown in figure 1(a). This structure is also known as
the two-torus. It is defined by the 2D potential

Var(x,y) = Vo min (1 — exp [—2(p(x — X0,)) — R)Z/wz] ,
1 —exp [—2(p(x + x0,y) — R)* /w?]),, 4)

where p(x,y) = \/x2 + y2, and the centres of the two rings
with radius R and width w are set at

y=0, x=*Hxp=+R+9), (5)
0 > 0 being a shift that separates the two side-by-side rings.
The choice R > w > &, for healing length { = R/, /mji, gives
the rings 2D character and thus justifies the use of T3y as
a measure of critical temperature. Further, the height of the
potential, Vo = 27.5 kg nK > p, is fixed throughout the work.
This potential is the double-ring extension of the single-ring
trap used in reference [77]. However, as the two-torus is not
homeomorphic to the torus, due to the differing topology, one
might expect the system dynamics within each section of the
double-ring to be different from the single-ring case. We have
verified that approximating the single-ring potential as Ve o<
(p — R)?, instead of the expression adopted in equation (4),
does not conspicuously affect results presented below. Panel
(1) in figure 1(a) shows potential (4) for R = 25 ym, w = 6 um
and 0 = 0, and the blue curve in (ii) shows a cross section along
y = 0. These trap parameters are chosen to fit known experi-
mental ranges, typically R = (12-70) pm and w = (3—12) um
[17, 78]. Experiments with even larger radii, reaching
R = 262 pum, have been performed with time-averaged poten-
tials; however the condensate was not coherent across the
whole ring in this setup [79].

Following the instantaneous quench, the atomic density
gradually grows to the equilibrium value, while the phase is
relaxing to a steady-state configuration. The process is ran-
dom, with each numerical run proceeding differently. Vortices,
spontaneously created in the course of the growth of the con-
densate, eventually decay, potentially leaving a persistent cur-
rent with winding numbers, n;. and ng, in the left and right
rings, respectively.

Figure 1(b) displays these dynamics, as the density equili-
brates in panels (i)—(v), and the coalescence of the phase pat-
terns is observed in (vi)—(x). For clarity’s sake, the phase plots
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Figure 1. Condensate growth in the double-ring geometry, with ring radius R = 25 pm, width w = 6 ym, and the inter-ring shift is § = 0,
see equation (5). (a), (i): the double-ring potential, (ii) its cross section along y = 0 (blue solid curve) and (iii) the evolution of the winding
number over scaled time ¢ for the left (blue squares) and right (red circles) rings. (b), (i)—(v): the density evolution in scaled time, with
Nmax = 73 pm 2. (vi)—(x): the corresponding phase profiles. For clarity, these have been masked by the Heaviside function

©(0.9Vy — Vg(x,y)), which filter out the contributions falling within the grey shaded area in (a), (ii).

are masked by the Heaviside function, ©(0.9Vy — Vg (x,y)),
set at 90% of the potential’s height, as shown by the grey
shaded area in panel (ii) of figure 1(a). In this example, the
final state evolves towards an equilibrium density with about
N ~ 2 x 10° atoms and with phase winding numbers (n , ng)
= (1,1), where we use the convention of positive winding
numbers for clockwise circulation [62]. The temporal evolu-
tion of n, (ngr) is shown in blue (red) in figure 1(a)—(iii), for a
single numerical run. Each simulation leads to a random obser-
vation of winding numbers in the left and right rings, and we
seek to quantify the effect that the presence of one ring has on
the other through the stochastic distribution of these winding
numbers. A movie of the time evolution for this example is
provided as supplementary material to this work.

Extracting the winding number from the phase pattern
is a two step-process. First, we apply high-pass filtering to
the wave function in the momentum space, setting D(k) =0
for k > keuort = /&, thus removing excitations with the spa-
tial scale smaller than a healing length, &, including sound
waves, vortices, and thermal noise. Then, we extract the
phase, ¢(p, #), from the Madelung representation of the wave
function, ¥ (p, 0) = /n(p, 0) expliod(p, 0)], at a radial distance
p = R, and count the number of jumps A¢ = 27 around the
ring. An example is shown in figures 2(i) and (ii), where a
clear 27 jump is visible in the azimuthal phase of both rings.
At early times the phase is random, as shown by the dotted
and dashed lines, for both the azimuthal and radial phase pro-
files. At later times (after the thermalisation process) a smooth
radial profile appears, whilst azimuthally the phase shows evi-
dence of a phase winding of 27 with a spatially varying gra-
dient. The nonlinear gradient is evident in figure 2(i) around
6 = 0 and (ii) around 6 = £7. As we will discuss, this effect
is pronounced for larger winding numbers, and a more extreme

example can be found in appendix A and in the supplemental
videos provided.

The code has been rigorously tested by manually imprint-
ing persistent current states up to n,, = 30 and comparing to
the numerically obtained count. Of 10000 tests with vary-
ing degrees of numerical noise, none was counted incorrectly.
Therefore we do not include any estimate of error in results
that follow.

Experimentally, the winding number is usually measured
through a variety of destructive techniques. In reference [80],
a ring was populated by two hyperfine states of 8’Rb, and
the interference pattern between the rotating and non-rotating
states was measured. A commonly employed method is to
measure the size of the central hole after a time-of-flight expan-
sion, either directly after removal of the trap [33, 77], or
after transforming the ring trap into a simply connected sheet
first, before turning off the trap [77, 80]. Recent advances
in the application of this technique have been achieved by
the inclusion of a small stationary BEC disk inside the
annulus and measuring the interference pattern between the
disk and annulus after the expansion [17, 24]. A minimally
destructive technique has been employed to find the wind-
ing number through measuring the Doppler shift of stand-
ing phonon modes [81], allowing for repeated measurements
in the course of one experiment. There is also a recent pro-
posal to allow a small number of atoms tunnel into a linear
waveguide adjacent to the ring to monitor the persistent cur-
rent in time [82] (similar to the setup well known in optics,
with a microring resonator coupled to a straight waveguide
[83D).

We summarize results of the simulations by means
of a 2D histogram of distributions of winding numbers
for the double-ring geometry. To approximate the true
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Figure 2. Azimuthal [(i) and (ii)] and radial [(iii) and (iv)] condensate phase shown for times y¢ = (1.35,3.75, 30) ms (dotted, dashed, solid
lines respectively, with increasing opacity for later times). The azimuthal phase is extracted around the lines (i) p(x + R,y) = R and (ii)

p(x — R,y) = R, while the radial phase profile is displayed along cross section y = 0. (v) References to the azimuthal (solid) and radial
(dashed) phase profiles are superimposed on the 2D phase plot. Other parameters are the same as in figure 1.

winding number distribution, we have performed 5000
numerical runs, each with random initial noise. Figure 3(a)
displays the result, which shows the probability of observing
states with winding-number sets (ny,ngr), white areas indi-
cating states that were not produced by the simulations. The
plots in figures 3(c)—(f) are examples of simulations con-
tributing to particular points indicated on the histogram in
figure 3(a). Highlighted are the states with winding-number
sets (np,nr) = {(2,-2),(2,2),(—3,—1),(0,—3)}. This his-
togram displays the supercurrent pairs measured at scaled
time ¢ =30 ms; in fact, panels (iii) in figures 3(c)—(f)
show that (n,ng) stay constant at ¢ 2> 10 ms. The dis-
tribution of these winding numbers fits a bivariate normal
form with no correlation between the left and right rings:
this is seen through calculation of the sample Pearson cor-
relation coefficient® —1 < r < 1 with r =0 corresponding
to an uncorrelated state, with our numerical data we find
r~ 10716,

Despite the lack of correlation in the formation of persistent
currents, an effect of the neighbouring ring on the other one is
still visible in velocity fields v(x,y) = (h/m)V$(x, y), seen in
figure 3(ii) subplots. When the inter-ring shift in equation (5) is
& = 0, the speed of atoms across the overlap region, where the
two ring traps are abutting on each other, may be approximated
by the relation

h|n — ng|

v(0,0)] = P

(6)

The validity of this relation is most easily observed in panel (ii)
figure 3(d), with (np,ngr) = (2,2). The speed is clearly zero

© The sample Pearson correlation coefficient is defined as
o S (P = i) — A )(P(ng = i) — 7ig)
VI P =0 — )2 /S Pl = i) — 7w

where P(n;, = i) is the probability of observing state n;, = i, i denotes the
mean probability, and the summation, with respect to index i, is performed
from j = min(n, ng) to k = max(nr, ng).

at the centre due to the counter-flow between the two rings;
nevertheless, the total phase winding around each ring is still
4. We conclude that when, n;, = ng, atoms are quiescent at
the centre due to the counter-flow. The atom fluxes flow along
outside path, still maintaining the total phase winding around
each ring.

However, when n;, = —ng, there is a co-flow across the
centre, with the speed doubled in the central reservoir. This
scenario is shown in panel (ii) of figure 3(c), where the veloc-
ity for the case of (n,nr) = (2, —2) is shown as a function
of the angle around the ring. The velocity is indeed dou-
bled across the overlap of the two rings, and correspond-
ingly suppressed around the rest of the rings, such that val-
ues 2mn,, of the total phase windings are maintained in the
system.

The atom flow for all other cases, with |ng| # |ng|, leads
to an exchange of atoms between the rings, determined by the
magnitude of |n — ng|. Perhaps the most interesting case is
displayed in panel (ii) of figure 3(f), where the supercurrent in
the left ring remains zero, despite constantly exchanging atoms
with the right counterpart. This is evidenced by the phase gra-
dients present around the left ring, while the maintained total
phase accumulation is zero.

The impact of these results is apparent when considering
potential experimental measurements of the current. Destruc-
tive measurements are unlikely to be possible, given the close
proximity of the two rings. However, the minimally destruc-
tive measurement techniques, currently applied to single-ring
geometries, will be affected by the angular dependence of the
velocity around each ring, shown in figure 3(ii). This will
induce a spatial dependence on the Doppler shift of phonon
modes [81] and the atom flux entering an adjacent linear
waveguide [82].

3.1. Comparison to instantaneous thermal quenches

The use of a random noise initial condition is a numerically
less demanding approximation to computing an instantaneous
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Figure 3. The distribution of persistent currents in the double-ring geometry. (a): the 2D histogram of winding numbers, produced by results
of 5000 runs of the SPGPE. Coloured squares correspond to the phase plots and velocity fields below. (b): marginal histogram distributions
for the left (n,) and right (ngr) rings, comparing growth from noise to instantaneous thermal quench simulations, error bars contain the true
probability within a 95% confidence interval. (c)—(f): (i) phase plots, (ii) velocity fields, and (iii) winding number evolutions of a typical
single numerical run from within the selected squares from (a). Parameters are the same as figure 1.

thermal quench. To justify our choice for the former, we com-
pare the distribution obtained through a dynamical quench to
that of one obtained from a random initial state. Performing
a thermal quench simulation requires equilibrating to a ther-
mal cloud with temperature 7 = 300 nK, then instantaneously
quenching to the target temperature 7 = 10 nK at r = 0. As
before, the winding numbers are measured at v = 30 ms.
Summing over the observed probabilities with fixed ny, (or ng)
from the histogram yields a marginal distribution for ng (or
np,). Figure 3(b) shows that both methods produce practically
identical results, and thus we choose to equilibrate from noise
for the rest of this work. Error bars represent a 95% confidence

interval containing the true probability, found by fitting with a
normal distribution.

4. Benchmarking against instantaneous quenches
in a single ring

The observation of the formation of uncorrelated persistent
currents in the two rings in both instantaneous quenches from
noise or from a thermal initial state, despite the evident den-
sity overlap, suggests that such a distribution may in fact
be explained in terms of well-known results for indepen-
dent single-ring settings. In quenches from a noisy initial
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Figure 4. Formation of persistent currents in the single-ring trap. (a) The trapping potential from equation (7) with parameters R = 25 um
and w = 6 pm. (b) An equilibrium density profile produced by a single run of the SPGPE. (c) The distribution of winding numbers n,, after
5000 realisations of the SPGPE, shown along with a fitted Gaussian distribution (red curve), whose standard deviation is ¢ = 1.5338. Insets

show examples of phase profiles for n,, = (—1, 0, 5) from left to right, masked by the Heaviside function ©(0.9V, —

Ve, y)) for clarity. (d)

Marginal distributions for the single-ring n,,, and for the left (n,) and right (nr) rings from figure 3.

condition, this result might have been anticipated by extrap-
olation of the 1D findings of Das et al [23], who highlighted
the critical importance of local phase formation and evolu-
tion, over the global evolution around the ring. However in
the present case, this was by no means a priori guaranteed
for two reasons: firstly, the simulations in reference [23] were
limited to an explicitly 1D ring, as opposed to the 2D rings
numerically simulated here, which also account for the role of
radial phase fluctuations (see figure 2 and movies); secondly,
and most importantly, given that the two-torus is not homeo-
morphic to the torus, the final results in the two cases need not
be mappable onto each other. Indeed, while the overall distri-
bution of winding numbers remains the same across the two
non-homeomorphic cases, the actual azimuthal phase gradient
is non-uniform in the case of the double ring, in stark con-
trast to the uniform phase gradient of a single ring. In the end,
our explicit 2D numerical simulations confirm that the local
character of phase evolution also dominates in the 2D case in
the determination of the long-ferm winding number combina-
tions across the two rings, while the short-term evolution is
random.

To make a connection to the single-ring case, we consider
a single ring, defined by potential

Vi, y) = Vo {1 —exp [-2(p(x,y) — R’ /w?]} . (T)

For ease of comparison, we keep here all parameters the same
as in the previous section, and observe the distribution of wind-
ing numbers after an instantaneous quench in such a ring. In
particular, for u kept fixed, the arising atom number in the
single trap is found to be N ~ 1.1 x 10°. Our findings are
presented in figure 4, showing explicitly the potential (panel
figure 4(a)), and the equilibrium density at y# = 30 ms in panel
figure 4(b).

The obtained distribution of winding numbers, n,,, after
5000 numerical runs (figure 4(c)) reveals a (univariate) normal
distribution N,, ~ N(0, ), with o = 1.5338 4 0.037 within a
95% confidence interval; this is plotted as a red curve in the his-
togram of figure 4(c). There are several factors that can reduce
the observed value of o, including a trap’s tilt angle away from

the azimuthal plane [23], a longer thermal quench time [17],
and smaller chemical potentials [24].

Zurek’s original work considered how the thermal quench
through a phase transition would leave behind a superfluid cir-
culation in an annulus [1]. In the course of the phase transition,
the condensate forms N ~ C/d uniformly spaced, independent
regions of coherent phase around the ring, with circumfer-
ence C and defect size d. Taking d ~ w [1] gives N = 27R/w
regions. Paraoanu derived [84] that for N independent con-
densates with uniform phases, placed alongside one another,
the maximum stable winding number is N/4. Thus, for these
parameters we would expect winding numbers n,, < 7, which
is consistent with our finding of n, = 6 being the largest
recorded winding number.

Further confidence in our methodology and presented
numerical predictions is provided by explicitly comparing
our numerical results to findings of a recent experiment
with ultracold atoms on a single ring. Specifically, Cor-
man et al [17] considered finite-duration quenches on a
quasi-2D ring, in a direct test of the Kibble—Zurek scal-
ing law. Simulating such a finite-duration cooling quench
protocol by means of the present scheme and starting from
an initial thermal state, we obtain excellent agreement (see
appendix B).

To compare the results obtained in the framework of the
double-ring geometry, to those considered in the single-ring
geometry, we compare to the marginal distributions from
figure 3. These results are practically identical to the distri-
bution of the winding numbers for the single ring, as clearly
seen in figure 4(d). We thus conclude that a robust property,
inherent to each ring, is that, under quenched spontaneous con-
densate growth dynamics, the presence of the second ring does
not alter the steady-state distributions of persistent currents in a
given one, due to the prevailing importance of local phase for-
mation and evolution even in a purely 2D setting. Despite the
non-homeomorphic nature of the potentials, the close agree-
ment between the final ‘steady-state’ results for the two rings
and the single one is understood by the fact that the current is
a topologically protected number associated with each ring (it
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Figure 5. The quench in the 2D Bose gas confined in the lemniscate potential. (a) The 2D histogram of winding numbers produced by 5000
runs of simulations of the SPGPE. Coloured squares correspond to the surrounding phase plots and velocity fields. (b)—(c) Selected phase
plots, showing winding-number sets (2, —2) and (4, 3). (d) Panels (i)—(iv) display velocity fields of selected squares from (a). Other

parameters are the same as in figure 1.

may be thought of as having a ‘ghost’ vortex in the centre of
the ring).

5. Dependence on the trap geometry

The robustness of the winding number can also be tested by
replacing the two identical rings by the Bernoulli lemniscate,
or figure-of-eight configuration’. It is defined by the in-plane
potential

Viem(x,y) = (1 — exp { -2 (mtin [(x — xlcm(t))z]

+min [0 = ven®F]) /0 }),®)

where xje,, and yjep, are described parametrically for ¢ € (0, 27)
as

2R cos t sin t
d yem(t) = ———— O
and  yiem(?) Sl )

2R cos t

X 1) = —5——
enl?) = ST

7 This was suggested to us by J Dalibard.

The choice of an effective radius R = a/ \/f, where a is the
length from the origin to the foci, gives two rings of compara-
ble radius to the work above.

The results corresponding to this geometry are shown in
figure 5. Although the overlap area between the two ring-
like structures is significantly different in this case, with flow
from each ring structure in the central region directly passing
through each other, we still observe that the winding num-
bers in each ring are completely uncorrelated. Although, in this
geometry, the velocity fields show exchange of atoms between
the two circulation loops, there is no transfer of persistent
currents between them.

We also considered the case of a finite shift between the
two coupled ring traps, i.e., d # 0 in equation (5). In the
case of co-flows (n. = —ng), patterns of the fluid flow are
similar to those in the case of & = 0. However, for realiza-
tions exhibiting counter-flows (n;, = ng) varying § changes
the interpretation of the flow circuit. At 0 < § < w, the shear
flow between the rings can create a vortex in the low-density
overlap region, or several vortices, if the winding number is
large enough. In this scenario, the Kelvin—Helmbholtz instabil-
ity may develop at the interface [85], as seen in simulations
of the merger of two stacked rings with circulation [86, 87],
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see also [88]. An example of this for § = w/2 is shown in
appendix C.

All cases considered above uphold our conclusion that, in
our geometry, the resulting winding numbers in both rings are
produced by the random phase profiles spontaneously emerg-
ing in the course of the condensate growth, and the topolog-
ical stability of the established states is maintained by the
presence of persistent currents in each closed ring-shaped
geometry.

6. Discussion

We have explored the spontaneous growth of persistent cur-
rents in a quenched 2D Bose gas in the co-planar side-by-
side double-ring geometry. The emerging persistent currents
are stable and long-lived, and do not transfer between the
rings. The overall value of the winding number in each ring
behaves independently, which can be directly attributed to the
importance of the local nature of phase establishment in the
azimuthal direction, an observation that remains valid even
when allowing for radial random phase variations. While the
distribution of winding numbers across the two rings can there-
fore be directly mapped onto the well-known results for the
single-ring setting, it is important to note that the azimuthal
phase gradient in each ring (for a given non-zero winding num-
ber) is not constant, in direct contrast to the constant phase
gradient of the single ring case. This is more clearly visible
in cases of large |n.| 4 |nr|, examples of which are shown in
appendix A and movies of the real-time evolution of figures 1
and Al. This is one manifestation of the non-homeomorphism
between a single torus and a two-torus. Remarkably, however,
this is not necessarily an impediment to potential future atom-
tronic devices, which could utilize the observed robust nature
of the superfluid current configuration. The independence of
the ring winding numbers and stability of the formed supercur-
rents may facilitate a well-controlled current transfer protocol
between rings. Such deterministic transfer of winding numbers
across multiple-loop atomtronic architectures is a promising
direction for future research.

Varying the separation of the rings demonstrates the abil-
ity to modify the atom transfer between the rings and gen-
erate vortices between them. However, there is no sign of
angular momentum transfer between the rings. The robust-
ness of the persistent currents after the quench holds stead-
fast even against the change of trap geometry, such as
replacement of the double ring by the lemniscate potential,
where one might naively expect uncorrelated persistent cur-
rents in individual rings to be suppressed due to atomic
motion along a ‘figure-of-eight’ path. We also varied the
phenomenological damping parameter v in a broad range of
values, and extended the simulation time, which produced
no evidence of decay, confirming the efficiency of the topo-
logical protection of the spontaneously generated winding
numbers.

A natural question suggested by the present results is the
transfer of the winding numbers between the rings, which will
be the subject of further work. The ability to control the trans-
fer of winding numbers could be envisaged as a prototypical

atomtronic switch, providing an avenue for controllable real-
ization of coherent quantum phase slips required for the
Mooij—Harmans qubit [38, 39]. A hot topic of current stud-
ies of toroidal BECs is the supercurrent decay mechanism, an
understanding of which could help one to control the trans-
fer of current states between the rings. The Gross—Pitaevskii
equation and its many extensions [53—-55] do not capture
supercurrent decay, even at finite temperature, without an
external barrier. However, due to roughness of the potential,
the decay time for large winding numbers decay in experi-
ments is on the order of seconds, whereas n,, ~ 1 may be
stable on times on the order of minutes [80]. Theoretical stud-
ies of the decay mechanism so far have all relied on effects
along the annulus, caused by a repulsive barrier, the decay
being visualized as vortices crossing the barrier region radi-
ally. In reference [88] it was shown that the temperature-
induced decay does not fit the Caldeira—Leggett supercon-
ductivity model, i.e., the observed decay rate does not match
simple models of quantum tunnelling and thermal activation
of phase slips. Using a truncated Wigner approximation, ref-
erence [90] attributed some of the disagreements between
the theory and experiment to thermal fluctuations, however
exact identification of the decay mechanism remains an open
question.

Data supporting this publication is openly available under
an Open Data Commons Open Database License [91].
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Appendix A. Nonlinear azimuthal phase gradient
around the ring

We have shown that in co-planar two-ring geometries with
large density overlap the phase gradient for a persistent current
winding is not linear, but instead a function of the azimuthal
angle 0 around the ring. In figure A1 we illustrate this effect
for the supercurrent combination (—3,—1). Crucially, the
presence of the flow from the left ring is strong enough to
reverse the direction of the flow in the right ring, as evidenced
from the grey-shaded region pf overlap of the two rings. As
explained in section 3, this is possible due to the exchange
of atoms between the rings. The time evolution of the density
and phase (shown in the 2D plane, azimuthally and radially)
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Figure A1. Centre: 2D phase profile for the case (—3, —1). Left: azimuthal phase profile for the left ring, grey highlights the region of
overlap between the rings. Right: azimuthal phase for the right ring, shifted in the x-axis such that the overlap region of the two rings occurs
in the grey region. Other parameters are the same as in figure 1.
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Figure B1. (a) A power-law dependence given by equation (B.1). Each blue point is the measurement of (|n,,|) after 5000 SPGPE
simulations for varying w = (3,6) um and R = (12.5, 18.75, 25, 37.5, 50) um. The grey region covers the range of R < 2w, when there is no
central hole in the density. (b) The distribution of observed winding numbers, produced by the thermal quench with ramp time 7, = 0.025 s.
Red (wide) bars are experimental data from reference [17] for the single ring, based on 36 runs, while blue (thin) bars represent numerical
data collected from 5000 realisations of the SPGPE. Parameters are specified in the main text.

can be seen in the supplemental material provided with this
work.

Appendix B. Comparison of experimental results
and theoretical predictions

In 1985 Zurek considered how a thermal quench through a
phase transition would leave behind a superfluid circulation in
an annulus [1]. He postulated that during the phase transition
the condensate forms N ~ C/d independent regions of coher-
ent phase around the ring, with circumference C and defect size
d. In previous works, the resulting average winding number,
calculated at the end of the thermal quench, has been shown to

scale as
< | | > C 1/2 27R 1/2
Ny|) X | — 710 .

where we assume that the width of the ring is close to the
defect’s size, d ~ w [1].

(B.1)

B.1. Direct confirmation of Kibble—Zurek scaling for
finite-duration quenches

In the related work of Das er al [23] they tested the depen-
dence of relation (B.1) on a linear temperature quench in time
in an explicit 1D setting, and found excellent agreement. In this
appendix we carry out finite duration quenches from a high to
a low temperature, in an explicitly 2D geometry, thus assess-
ing the 2D nature through the radial width w. In figure B1(a)
it is seen that our analysis agrees with this prediction, indi-
cating optimal experimental geometries for observing larger

winding numbers. Specifically here we have chosen w =
(3,6) um > ¢ and varied R = (12.5, 18.75,25,37.5,50) um
using a finite duration quench with the ramp time 7, = 0.001 s
from an initial thermal state at 7 = 250 nK (T’ ~ 1.25T3%) to
T =10nK (T ~ 0.05Tg%1)-

B.2. Comparison to experiment of reference [17]

Next we compare our results to the recent work by Corman
et al [17], which addressed temperature quenches with dif-
ferent ramp rates in the single-ring geometry with parame-
ters R = 12 um and w = 3 um. We take p = 12.5kg nK to
match the atom number N = 36 000. At the end of each tem-
perature quench, the winding number was measured by turn-
ing off the trap potential and looking at the ensuing interfer-
ence pattern, produced by the interplay of the ring with inter-
nal stationary disk. We have carried out simulations of one
of those experiments, for the finite duration thermal quench
from 7 =300 nK (T ~ 2Tg%y) down to 7 =10 nK (T ~
0.07Tg%), with the ramp time 7, = 0.025 s. The experiment
was repeated 36 times, with the aim to create a histogram of the
resulting winding numbers. In figure B1 we compare the his-
tograms representing the experimental findings and our numer-
ical results (red and blue columns, respectively), the latter ones
produced by 5000 simulations of the SPGPE. The figure
demonstrates excellent agreement. Due to a relatively low
number of experimental realizations, the respective histogram
is not exactly symmetric about n,, = 0, although it features
(nw) =~ 0, confirming the stochasticity of the distribution.
The experimentally produced average absolute winding num-
ber corresponding to this dataset is (|n,|) = 0.6, while our
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Figure C1. Distribution of persistent currents in a double-ring geometry, with 6 = w/2. (a) 2D histogram of observed winding numbers
after 5000 runs of the SPGPE. Coloured squares correspond to the surrounding phase plots and velocity fields. (b) Measure of the relative
difference between the 6 = 0 and § = w/2 histograms. Note the different spatial extent of the colorbar in this case, corresponding to a
maximum relative error of 6.3%. (i)—(viii) Phase plots and velocity fields of selected squares from (a). Other parameters are the same as

figure 1.

simulations yield (|n,|) = 0.5926. The experiments did not
feature winding numbers |n,,| > 2, while 5 of our 5000 sim-
ulations yielded |n,| = 3. It may be that still larger val-
ues are possible in this geometry, but with a probability <
0.001. Comparing to the relation from reference [84], we
expect that the maximum permitted value is |n,,| = 6, although
this prediction does not account for the temperature ramp
rate.

Appendix C. Effect of finite ring separation
distance ¢ on winding number histogram

Addressing effects of the finite separation between the rings
(0 > 0 in equation (5)), in figure C1 we present results of
5000 simulations of the SPGPE with § = w/2. The histogram
of steady-state winding numbers does not display any signifi-
cant difference from the § = 0 case. This conclusion was veri-
fied by calculating the relative error between the two observed
probability distributions, A(probability) = |P(n,(6 = 0)) —
P(n,(d = w/2))|/P(n,(6 = 0)), the result being that the varia-
tion is < 7%. The correlation of the winding numbers between
the two separated rings is still effectively zero (r ~ 1071%).
Note that, in the limit of large 6, the rings become completely
independent systems, for which the above results for the single
ring are directly relevant.

For intermediate values of § (0 < § < w) the velocity fields
are remarkably similar to those presented for § = 0. However,
as stated in the main text, states with n;, = ng exhibit shear
flow between the rings which may create vortices in the low
density overlap region [85-87].

Até > wtherings are spatially separated, with little density
overlap. Recent works have found that, even in this case, the

1

angular-momentum states (truncated to |n,| < 1) can couple
to one another and tunnel, at the single-particle level [45—-48].
However, the nonlinearity in the Gross—Pitaevskii equation
couples the setting to higher-order angular-momentum states,
and destroys the simple picture. By tuning the nonlinearity
to be negligible through the Feshbach resonance [92], it may
be possible to create a superfluid state admitting tunnelling of
angular-momentum states.
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