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In atomic systems, clock states feature a zero projection of the total angular momentum and thus a low
sensitivity to magnetic fields. This makes them widely used for metrological applications like atomic
fountains or gravimeters. Here, we show that a mixture of two such nonmagnetic states still displays
magnetic dipole-dipole interactions comparable to the one expected for the other Zeeman states of the same
atomic species. Using high-resolution spectroscopy of a planar gas of 87Rb atoms with a controlled in plane
shape, we explore the effective isotropic and extensive character of these interactions and demonstrate their
tunability. Our measurements set strong constraints on the relative values of the s-wave scattering lengths
aij involving the two clock states.
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Quantum atomic gases constitute unique systems to
investigate many-body physics thanks to the precision with
which one can control their interactions [1,2]. Usually, in
the ultralow temperature regime achieved with these gases,
contact interactions described by the s-wave scattering
length dominate. In recent years, nonlocal interaction
potentials have been added to the quantum gas toolbox.
Long-range interactions can be mediated thanks to optical
cavities inside which atoms are trapped [3]. Electric dipole-
dipole interactions are routinely achieved via excitation of
atoms in Rydberg electronic states [4]. Atomic species with
large magnetic moments in the ground state, like Cr, Er, or
Dy, offer the possibility to explore the role of magnetic
dipole-dipole interactions (MDDIs) [5]. The latter case has
led, for instance, to the observation of quantum droplets [6],
roton modes [7], or spin dynamics in lattices with off site
interactions [8–10].
For alkali-metal atoms, which are the workhorse of many

cold-atom experiments, the magnetic moment is limited to
≲1 Bohr magneton (μB) and in most cases, MDDIs have no
sizeable effect on the gas properties [11]. However, some
paths have been investigated to evidence their role also for
these atomic species. A first route consists of specifically
nulling the s-wave scattering length using a Feshbach
resonance [12,13], so that MDDIs become dominant. A
second possibility is to operate with a multicomponent (or
spinor) gas [14], using several states from the ground-level
manifold of the atoms. One can then take advantage of a
possible coincidence of the various scattering lengths in
play. When it occurs, the spin-dependent contact interac-
tion is much weaker than the spin-independent one, and
MDDIs can have a significant effect [15], e.g., on the
generation of spin textures [16,17] and on magnon spectra
[18]. In all instances studied so far with these multi-
component gases, each component possesses a nonzero

magnetic moment and creates a magnetic field that
influences its own dynamics, as well as the dynamics of
the other component(s).
In this Letter, we present another, yet unexplored, context

in which MDDIs can influence significantly the physics of a
two-component gas of alkali-metal atoms.We operatewith a
superposition of the two hyperfine states of 87Rb involved in
the so-called hyperfine clock transition, j1i≡ jF ¼ 1; mZ ¼
0i and j2i≡ jF ¼ 2; mZ ¼ 0i, where thequantization axisZ
is aligned with the uniform external magnetic field
[Fig. 1(a)]. For a single-component gas prepared in one of
these two states, the average magnetization is zero by
symmetry andMDDIs have no effect. However, when atoms
are simultaneously present in these two states, we show that
magnetic interactions between them are nonzero, and that the
corresponding MDDIs can modify significantly the position
of the clock transition frequency.
Our Letter constitutes a magnetic analog of the obser-

vation of electric dipole-dipole interactions (EDDIs)
between molecules in a Ramsey interferometric scheme
[19]. There, in spite of the null value of the electric dipole
moment of a molecule prepared in an energy eigenstate, it
was shown that EDDIs can be induced in a molecular gas
by preparing a coherent superposition of two rotational
states. Both in our Letter and in [19], the coupling between
two partners results in a pure exchange interaction, with
one partner switching from j1i to j2i and the other one from
j2i to j1i. This exchange Hamiltonian also appears for
resonant EDDIs between atoms prepared in different
Rydberg states [20].
In spite of their different origin, the physical manifes-

tations of MDDIs in our setup are similar to the standard
ones. Here, we study it for a 2D gas using high-resolution
Ramsey spectroscopy [Fig. 1(b)] and we explicitly test two
important features of dipole-dipole interactions in this
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planar geometry: their effect does not depend on the in plane
shape of the cloud (isotropy), nor on its size (extensivity).
More precisely, we recast the role of MDDIs as a modifi-
cation of the s-wave interspecies scattering length a12 and
show the continuous tuning of a12 by changing the orienta-
tion of the external magnetic field with respect to the atom
plane. We obtain in this way accurate information on the
relative values of intra- and interspecies bare scattering
lengths of the studied states.
We start with the restriction of the MDDIs Hamiltonian

to the clock state manifold [21], using the magnetic
interaction between two electronic spins ŝA and ŝB with
magnetic moments mA;B ¼ 2μBsA;B,

V̂ddðr; uÞ ¼
μ0μ

2
B

πr3
½ŝA · ŝB − 3ðŝA · uÞðŝB · uÞ�; ð1Þ

where r is the distance between the two dipoles and u is the
unit vector connecting them. The calculation detailed in the
Supplemental Material [22] shows that MDDIs do not
modify the interactions between atoms in the same state j1i
or j2i, but induce a nonlocal, angle-dependent exchange
interaction [Figs. 1(c) and 1(d)]. The second-quantized
Hamiltonian of the MDDIs for the clock states is thus

Ĥð1;2Þ
dd ¼ μ0μ

2
B

4π

ZZ
d3rAd3rB

1 − 3 cos2 θ
r3

× Ψ̂†
2ðrAÞΨ̂†

1ðrBÞΨ̂2ðrBÞΨ̂1ðrAÞ; ð2Þ

where the Ψ̂iðrαÞ are the field operators annihilating a
particle in state jii at position rα, r ¼ jrA − rBj, and θ is the
angle between rA − rB and the quantization axis.

We now investigate the spatial average value of Ĥð1;2Þ
dd .

We note first that, for a 3D isotropic gas, the angular

integration gives hĤð1;2Þ
dd i3D ¼ 0, as usual for MDDIs [5].

We then consider a homogeneous quasi-2D Bose gas
confined isotropically in the xy plane with area L2. We
assume that the gas has a Gaussian density profile along the
third direction z, n1;2ðzÞ ¼ N1;2e−z

2=l2z =
ffiffiffi
π

p
lzL2, where

lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
is the extension of the ground state of

the harmonic confinement of frequency ωz for particles of
mass m, and N1;2 is the atom number in states j1i, j2i. One
then finds [23–25]

hĤð1;2Þ
dd i2D ¼ μ0μ

2
BN1N2

3
ffiffiffiffiffiffi
2π

p
lzL2

ð3 cos2Θ − 1Þ; ð3Þ

where Θ is the angle between the external magnetic field B
and the direction perpendicular to the atomic plane. This
energy is maximal and positive for B perpendicular to
the atomic plane (Θ ¼ 0) and minimal and negative for B in
the atomic plane (Θ ¼ π=2). Equation (3) shows that the
energy per atom in state j1i depends only on the spatial
density N2=L2 of atoms in state j2i, which proves the
extensivity.
In 2D, the Fourier transform of the dipole-dipole

Hamiltonian possesses a well-defined value at the origin
k ¼ 0 [23]. Consequently, for a large enough sample

(typically, L ≫ lz), the average energy hĤð1;2Þ
dd i2D, evalu-

ated by switching the integral (2) to Fourier space, is
independent of the system shape. This contrasts with the
3D case, for which the MDDIs energy changes sign when
switching from an oblate to a prolate cloud [5,26].
Considering the effective isotropy of the MDDIs in
this 2D configuration, it is convenient to describe their
role as a change δa12 of the interspecies scattering length

with respect to its bare value defined as að0Þ12 . In 2D,

interspecies contact interactions lead to hĤð1;2Þ
contacti2D ¼ffiffiffiffiffiffi

8π
p

a12ℏ2N1N2=ðmlzL2Þ and we deduce

δa12ðΘÞ ¼ addð3 cos2Θ − 1Þ; ð4Þ

where add ¼ μ0μ
2
Bm=ð12πℏ2Þ is the so-called dipole length

that quantifies the strength of MDDIs [27].
We now tackle the experimental observation of this

modification of the interspecies scattering length in a quasi-
2D Bose gas. The experimental setup was described in
[30,31]. Basically, a cloud of 87Rb atoms in state j1i is
confined in a 2D box potential: A “hard-wall” potential
provides a uniform in plane confinement inside a 12 μm
radius disk, unless otherwise stated. The vertical con-
finement can be approximated by a harmonic potential

(a)

(c) (d)

(b)

FIG. 1. (a) Level diagram of the hyperfine ground-level mani-
fold showing the two states relevant to this Letter: j1i≡ jF ¼ 1;
mZ ¼ 0i and j2i≡ jF ¼ 2; mZ ¼ 0i. (b) Image of the atomic
cloud obtained through absorption imaging along the direction
perpendicular to the atomic plane. Atoms are confined in the xy
plane in a disk of radius 12 μm. The orientation of the magnetic
field B is tuned in the xz plane. (c) Schematics of atoms prepared
in the state j1i, with no MDDIs in this case. MDDIs are also
absent when all atoms are in j2i. (d) Significant MDDIs occur for
atoms in a linear superposition of j1i and j2i.
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with frequency ωz=2π ¼ 4.4ð1Þ kHz, corresponding to
lz ¼ 160 nm. We operate in the weakly interacting regime
characterized by the dimensionless coupling constant
g̃ ¼ ffiffiffiffiffiffi

8π
p

a11=lz ¼ 0.16ð1Þ, where a11 is the s-wave scat-
tering length for atoms in j1i. The in plane density of the
cloud is n̄ ≈ 95=μm2 and we operate at the lowest achiev-
able temperature in our setup T < 30 nK. A ≈ 0.7 G bias
magnetic field Bwith tunable orientation is fixed during the
experiment.
Spectroscopy is performed thanks to a Ramsey sequence

similar to [32]. Atoms initially in j1i are coupled to state j2i
with a microwave field tuned around the hyperfine splitting
of 6.8 GHz. A first Ramsey pulse with a typical duration
of a few tens of microseconds, creates a superposition of the
two clock states with a tunable weight. After an “inter-
rogation time” TR ¼ 10 ms, a second identical Ramsey
pulse is applied [33]. After this second pulse, we perform
absorption imaging to determine the population in j2i. We
measure the variation of this population as a function of the
frequency of the microwave field, see Figs. 2(a) and 2(b).
We fit a sinusoidal function to the data, so as to determine
the resonance frequency of the atomic cloud. All frequency
measurements Δν are reported with respect to reference
measurements of the single-atom response that we perform
on a dilute cloud. The typical dispersion of the measure-
ment of this single-atom response is about 1 Hz and
provides an estimate of our uncertainty on the frequency
measurements. We checked that the measured resonance
frequencies are independent of TR in the range 5–20 ms.
Shorter delays lead to a lower accuracy on the frequency
measurement. For longer delays, we observe demixing
dynamics [34] between the two components and a modi-
fication of the resonance frequency.
In the following, we restrict to the case of strongly

degenerate clouds [35] described in the mean-field approxi-
mation. Consider first the case of a uniform 3D gas. The
resonant frequency Δν can be computed by evaluating the
difference of mean-field shifts for the two components [32],

Δν ¼ ℏ
m
n½a22 − a11 þ ð2a12 − a11 − a22Þf�: ð5Þ

Here the aij are the inter- and intraspecies scattering
lengths, n ¼ n1 þ n2 is the total 3D density of the cloud
where each component i has a density ni after the first
Ramsey pulse and f ¼ ðn1 − n2Þ=ðn1 þ n2Þ describes the
population imbalance between the two states.
It is interesting to discuss briefly two limiting cases of

Eq. (5). In the low transfer limit f ≈ 1, the first Ramsey
pulse produces only a few atoms in state j2i, imbedded in a
bath of state j1i atoms. Interactions within pairs of state j2i
atoms then play a negligible role, so that the shift Δν does
not depend on a22. It is proportional to ða12 − a11Þ, hence
sensitive to MDDIs. In the balanced case f ¼ 0, the
Ramsey sequence transforms a gas initially composed only
of atoms in state j1i into a gas composed only of atoms in

state j2i. The energy balance between initial and final
states then gives a contribution Δν ∝ ða22 − a11Þ, which is
insensitive to MDDIs.
It is important to note that the validity of Eq. (5) for a

many-body system is not straightforward and requires
some care [36,37]. We discuss in Ref. [38] the applicability
of this approach to our experimental system and show that
it relies on the almost equality of the three relevant
scattering lengths aij of the problem. Note also that in
our geometry, even if the gas is uniform in plane, the
density distribution along z is inhomogeneous and the
spectroscopy measurement is thus sensitive to the inte-
grated density n̄ðx; yÞ ¼ R

dznðx; y; zÞ.
We now discuss the measurement of the frequency shift

Δν as a function of the imbalance f for different orienta-
tions of the magnetic field with respect to the atomic plane,
see Fig. 2(c). For each orientation, we confirm the linear
behavior expected from Eq. (5). The variation of the slope

(a)

(c)

(b)

FIG. 2. (a),(b) Normalized Ramsey oscillations measured for B
perpendicular (Θ ¼ 0°) or parallel (Θ ¼ 90°) to the atomic plane.
For both cases, we show the transferred population as a function
of detuning δ to the single-atom resonance. In each case the
resonance is marked by a vertical dashed line. The circles
(respectively, squares) correspond to a balanced (respectively,
unbalanced) mixture f ¼ 0 (respectively, f ≈ 0.95). Vertical error
bars represent the standard deviation from the two measurements
realized for each points. (c) Variation of the frequency shift Δν
with the imbalance f. We restrict to positive imbalances, for
which the population in j2i remains small enough to limit the role
of two-body relaxation and spin-changing collisions. For each
angle, the solid line is a linear fit to the data.
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dΔν=df for different orientations reflects the expected
modification of a12 with Θ of Eq. (4). More quantitatively,
we fit a linear function to the data for each Θ. The ratio
of the slope to the intercept of this line is RðΘÞ ¼
½a22 þ a11 − 2a12ðΘÞ�=ða22 − a11Þ. Interestingly, this ratio
is independent of the density calibration and is thus a robust
observable.
The evolution of the measured ratio for different angles

is shown in Fig. 3. For Θ ¼ 0° and 90°, we also show the
ratio measured for a density approximately twice as small
as the one of Fig. 2. These two points overlap well with
the main curve, which confirms the insensitivity of R with
respect to n̄. We fit a sinusoidal variation Θ ↦ αþ
β cosð2ΘÞ to RðΘÞ from which we extract α ¼ 0.53ð1Þ
and β ¼ 0.30ð1Þ. We then determine a22 − a11 ¼ −3add=β
and að0Þ12 −a11¼addð3α−3−βÞ=ð2βÞ. Using add¼0.70a0,
with a0 the Bohr radius, we find a22 − a11 ¼ −7.0ð2Þa0
and að0Þ12 − a11 ¼ −2.0ð1Þa0. These results are in good
agreement with the values predicted in [39], a11 ¼
100.9a0, a22 − a11 ¼ −6.0a0, and að0Þ12 − a11 ¼ −2.0a0.
All experiments described so far have been realized with

a fixed disk geometry. As stated above, the description of
the contribution of MDDIs as a modification of the
interspecies scattering length relies on the effective isotropy
of the interaction in our 2D system. We investigate
this issue by measuring the frequency shift of the clock
transition for an in plane magnetic field orientation

(Θ ¼ 90°), which breaks the rotational symmetry of the
system. We operate with a fixed density (n̄ ≈ 80=μm2) and
a varying elliptical shape. We choose a large imbalance
f ≈ 0.95 to have the highest sensitivity to possible mod-
ifications of a12. We define an anisotropy parameter
η ¼ ðRy − RxÞ=ðRx þ RyÞ for the ratio of the lengths Rx

and Ry of the two axes of the ellipse. We report in Fig. 4 the
measured shifts as a function of η and confirm, within our
experimental accuracy, the independence of the MDDIs
energy with respect to the cloud shape. We have also
investigated the influence of the size of the cloud on Δν
(inset of Fig. 4). Here we choose a disk-shaped cloud and
a magnetic field perpendicular to the atomic plane. We
observe no detectable change ofΔνwhen changing the disk
radius from 8 to 18 μm, which confirms the absence of
significant finite-size effects.
In conclusion, thanks to high-resolution spectroscopy we

revealed the non-negligible role of magnetic dipolar inter-
actions between states with a zero average magnetic
moment. We observed and explained the modification of
the interspecies scattering length in a two-component
cloud. Because of the smallness of MDDIs for alkali-metal
atoms, we did not observe any modification of the global
shape of the cloud. This contrasts with the case of single-
component highly magnetic dipolar gases where the shape
of a trapped gas has been modified with a static [40–42]
or time-averaged-field [11,43]. Nevertheless, the effect
observed here provides a novel control on the dynamics
of two-component gases. For example, the effective inter-
action parameter between two atoms in state j2i mediated
by a bath of atoms in state j1i can be written as

FIG. 3. Variation of the ratio RðΘÞ determined from the data of
Fig. 2(c) with the magnetic field orientation Θ. Blue circles
(respectively, red squares) correspond to the measurement at
maximum density (respectively, half density). The variation of
this ratio is well fitted by a cosine variation compatible with the
prediction for MDDIs. The amplitude and offset of this variation
allow one to determine accurately relative values of the scattering
lengths. Vertical error bars represent the uncertainty obtained
from the fitting procedure of the data in Fig. 2. The uncertainty on
the determination of the angles is limited by the geometrical
arrangement of the coils generating the field B, estimated here at
the level of 1°.

FIG. 4. Interaction shift Δν as a function of the anisotropy
parameter η. For a fixed density and an in plane magnetic field,
we vary the anisotropy of the elliptically shaped 2D cloud. No
dependence on the shape of the cloud is observed, in agreement
with the expected isotropic character of MDDIs in 2D when
Rx;y ≫ lz. Vertical error bars represent the estimated 1 Hz
accuracy on the determination of the single-atom resonance
frequency. Inset: interaction shift as a function of the size of
the cloud, for B normal to the atom plane.
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g̃eff22 ¼ g̃22 − g̃212=g̃11, where g̃ij ¼
ffiffiffiffiffiffi
8π

p
aij=lz [44]. With

our parameters, we achieve a variation by a factor 7 of
g̃eff22 , which will lead to important modifications of polaron
dynamics. Similarly, it can be exploited to tune the
miscibility of mixtures or the dynamics of spin textures.
The distance to the critical point for miscibility, whose
position is given by g̃22g̃11 ¼ g̃212, is also strongly sensitive
to a variation of g̃12. For instance, the length scale of spin
textures appearing in phase separation dynamics of a
balanced mixture will be modified, for our parameters,
by a factor of almost 3 when Θ is switched from 0° to 90°
[34]. In addition, one can exploit the nonlocal character of
MDDIs by confining the atoms in a deep lattice at unit
filling, where the exchange coupling evidenced here will
implement the so-called quantum XX model [45] without
requiring any tunneling between lattice sites. The extreme
sensitivity of the clock transition and its protection from
magnetic perturbations will then provide a novel, precise
tool to detect the various phases of matter predicted within
this model.
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