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Inhomogeneity induced shortcut to adiabaticity in Ising chains with long-range interactions
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Driving a homogeneous system across a quantum phase transition in a quench time τQ generates excitations on
wavelengths longer than the Kibble-Zurek (KZ) length ξ̂ ∝ τ

ν/(1+zν )
Q within the KZ time window t̂ ∝ τ

zν/(1+zν )
Q ,

where z and ν are the critical exponents. Quenches designed with local time-dependent inhomogeneity can
introduce a gap in the spectrum. They can be parametrized by a time- and space-dependent distance ε from
the critical point in the parameter space of the Hamiltonian: ε(t, x) = t−x/v

τQ
≡ θ (vt − x). For a variety of

setups with short-range interactions, they have been shown to suppress excitations if the spatial velocity v of
the inhomogeneous front is below the characteristic KZ velocity v̂ ∝ ξ̂ /t̂ . Ising-like models with long-range
interactions can have no sonic horizon, spreading information instantaneously across the system. Usually, this
should imply that inhomogeneous transitions will render the dynamics adiabatic regardless of the velocity of the
front. However, we show that we get an adiabatic transition with no defects only when the inhomogeneous
front moves slower than the characteristic crossover velocity ṽ ∝ θ (z−1)ν/(1+ν ), where θ is the slope of the
inhomogeneous front at the critical point. The existence of this crossover velocity and adiabaticity of the model
results from the energy gap in the quasiparticle spectrum that is opened by the inhomogeneity. This effect can be
employed for efficient adiabatic quantum state preparation in systems with long-range interactions.

DOI: 10.1103/PhysRevB.102.214203

I. INTRODUCTION

The Kibble-Zurek mechanism (KZM) originated from
a scenario for defect creation in cosmological symmetry-
breaking phase transitions [1]. As the Universe cools, causally
disconnected regions must choose broken symmetry vacua
independently. Such random choices lead to topologically
nontrivial configurations that survive as topological defects.
In the cosmological setting, the average size of the causally
connected regions—and the average density of defects—is
set by the Hubble radius at the time of the transition. This
early Universe scenario relies on the speed of light and does
not apply to the laboratory phase transitions. For the lat-
ter, the dynamical theory [2,3] employs critical exponents
of the transition and the quench time to predict the scaling
of the resulting density of defects. The KZM was success-
fully tested using numerical simulations [4–15] and laboratory
experiments in condensed-matter systems [16–40]. More re-
cently, the KZM was adapted to quantum phase transitions
[41–46]. Theoretical developments [47–73] and experimental
tests [23,74–82] of a quantum KZM (QKZM) followed. The
recent experiment [81], where a quantum Ising chain in the
transverse field is emulated using Rydberg atoms, is consistent
with the theoretically predicted scalings [42–44].

In a cartoon version, whose limitations—but also basic
correctness—have been discussed in Ref. [69], the dynamics
of the system literally freezes-out in the neighborhood of the
critical point due to the critical slowing down/closing of the
energy gap. In a QKZM, a system initially prepared in its
ground state is smoothly ramped across a critical point to the
other side of the quantum phase transition. A distance from

the critical point, measured by a dimensionless parameter ε in
a Hamiltonian, can be linearized close to the critical point as

ε(t ) = t

τQ
, (1)

where τQ is a quench time. Initially, far from the critical point,
the evolution is adiabatic and the system follows its adiabatic
ground state. The adiabaticity fails at −t̂ when the reaction
time of the system, given by the inverse of the gap, becomes
slower than the timescale |ε/ε̇| = |t | on which the transition
is being imposed. The gap closes like � ∝ |ε|zν , where z
and ν are the dynamical and correlation length exponents,
respectively. From the equation |t | ∝ |t/τQ|−zν , we obtain
t̂ ∝ τ

zν/(1+zν)
Q and the corresponding ε̂ = t̂/τQ ∝ τ

−1/(1+zν)
Q .

In the cartoon “freeze-out” version of the impulse approxima-
tion, the ground state at −ε̂, with a corresponding correlation
length,

ξ̂ ∝ τ
ν/(1+zν)
Q , (2)

is expected to survive until +t̂ , when the evolution can restart.
In this way, ξ̂ becomes imprinted on the initial state for the
final adiabatic stage of the evolution after +t̂ . Oversimplified
as it is, the adiabatic-impulse-adiabatic approximation pre-
dicts correct scaling of the characteristic length scale with τQ

[see Eq. (2)] and the timescale

t̂ ∝ ξ̂ z. (3)

The postquench density of excitations is determined by ξ̂

within this scenario.
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FIG. 1. Schematic illustration of an inhomogeneous driving pro-
tocol in a system with long-range interactions. In (a), we indicate the
long-range couplings considered in this article, vanishing as a power
law with distance. In (b), the magnetic field is position dependent
and interpolates in space between disordered and ordered phases.
The inhomogeneous front has a linear slope equal to θ and sweeps
across the system with a spatial velocity v. The interplay between the
velocity, slope, and universal critical exponents of the model paves
the way for enhancing the adiabaticity of the transition across the
critical points.

Furthermore, ξ̂ and t̂ can be combined into the KZ spatial-
velocity scale,

v̂ ∝ ξ̂

t̂
∝ τ

(1−z)ν/(1+zν)
Q . (4)

In homogeneous systems with short-range interactions, this is
the maximal velocity of quasiparticles excited by the quench
[69]. This is why this speed limit is believed to be central
for the shortcuts to adiabaticity via an inhomogeneous KZM.
Therein, the external driving field has a smooth position de-
pendence, characterized by

ε(t, x) = t − x/v

τQ
≡ θvt − θx. (5)

Here, θ = (vτQ)−1 is a slope of the time-dependent ramp and
x = vt is the location where the driving field assumes the
critical value. The ramp is gradually taking the system across
the critical point, one part after another; see Fig. 1. In systems
with short-range interactions, the velocity of the driven critical
front v that is below v̂ was shown to pave the way to adiabatic
dynamics, both for classical [6,83–87] and quantum [88–93]
systems. An explanation appealing to causality is that the
initial choice of symmetry breaking to the left of the critical
point (i.e., in the part of the system that has crossed the critical
point earlier; see Fig. 1) is communicated across it, and biases
the parts of the system that are being taken across the critical
point to make the same choice. The bias is not feasible in
the supersonic regime, v � v̂, where the usual homogeneous
KZM with quench time τQ is ultimately recovered.

The homogeneous QKZM in systems with genuinely
long-range interactions was considered in recent publications
[62,63,69]. As no sonic horizon is observed for sufficiently
long-ranged interactions [94–97], the causality argument

becomes problematic. Indeed, at least in exactly solvable
models of this class, the dynamical exponent z < 1 implies
(via quasiparticle dispersion ω ∝ kz) that quasiparticle group
velocity, dω/dk ∝ kz−1, diverges when k → 0. The softest
quasiparticles, which are most excited by the quench, have
infinite propagation velocity. Furthermore, given that the
QKZM excites quasimomenta up to k̂ ∝ ξ̂−1, whose group
velocity is k̂z−1 ∝ ξ̂ /t̂ ∝ v̂, the KZ velocity is not an upper
but a lower speed limit. Therefore, there should be no speed
limit (in the usual sense of this word) to suppress communi-
cation across the critical point when its velocity v � v̂. The
usual adiabatic evolution is expected for v � v̂, but, based
on causality alone, adiabaticity in the regime v � v̂ cannot
be excluded. Surprisingly, we observe a clear-cut crossover
between an adiabatic regime and effectively homogeneous
KZM regime near v̂, challenging the conventional notions of
causality.

A possible clue to the explanation may lay in a variant
of the KZM argument where the transition happens in space
[88,98–102] rather than time. Here we follow the discussion
in Ref. [88], where it was thoroughly illustrated in the stan-
dard short-range quantum Ising chain. In a similar way as in
Eq. (1), we make a linear approximation near the critical point,

ε(x) = −θx. (6)

In the first “local density approximation,” we would expect
the order parameter to behave as if the system were locally
uniform: it is nonzero only in the symmetry-broken phase, for
x < 0, and tends to zero like |θx|β when x approaches the crit-
ical point at x = 0−. However, this local approximation leads
to a contradiction because it predicts that a local correlation
length diverges like ξ (x) ∝ |θx|−ν as the critical point at x = 0
is approached. As the diverging ξ is the shortest healing length
on which the order parameter can adapt to changing ε(x), the
local approximation must fail when the distance remaining to
the critical point, |x|, becomes comparable to the local healing
length proportional to |ε(x)|−ν . It breaks down at a distance
|x| ∝ ξ̃ from the critical point, where

ξ̃ ∝ θ−ν/(1+ν). (7)

From x ∝ −ξ̃ , the evolution of the order parameter with x
becomes “impulse,” i.e., the order parameter does not change
until x ∝ +ξ̃ on the symmetric side of the transition where it
begins to follow the local ε(x) again. This way, the QKZM
in space predicts that the order parameter penetrates the sym-
metric phase to a depth proportional to ξ̃ . In other words, the
nonanalytic critical point is rounded off on the length scale ξ̃ .
On this basis, in the spirit of the critical scaling hypothesis,
we expect a nonzero energy gap scaling as

�̃ ∝ ξ̃−z ∝ θ zν/(1+ν). (8)

The local density approximation would predict a vanishing
gap for quasiparticles localized at the critical point, but, as
the localization is at odds with the zero gap, the energy gap
becomes nonzero and is set by the slope θ of the critical front.

The quasiparticles with this minimal gap are localized
within distance ξ̃ from the critical point. This is why, when the
front is made to move such as in Eq. (5), the relevant transition
rate is set by a ratio v/ξ̃ . A comparison between this rate and
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the gap �̃ yields a crossover velocity between an adiabatic
and an effectively homogeneous transition,

ṽ ∝ ξ̃ �̃ ∝ θ (z−1)ν/(1+ν). (9)

For v � ṽ, we expect ṽ—and the inhomogeneity as such,
from which it originates—to be irrelevant and the transition
to proceed as if it were effectively homogeneous. On the
other hand, for v � ṽ, excitations should be adiabatically
suppressed by the finite quasiparticle gap ∝ �̃.

As a final remark, notice that the velocity scale ṽ is not un-
related to v̂ in Eq. (4). When θ = 1/vτQ is inserted into Eq. (9)
and solved with respect to v, we obtain v̂ in Eq. (4). However,
the origin of ṽ is the finite gap induced by the inhomogeneity
and not the causality that becomes problematic for long-range
interactions.

This hypothesis of adiabatic-homogeneous crossover at ṽ

brings us close to the concept of shortcuts to adiabaticity
[103–105]. They are a set of fast processes leading one to
the desired final result, which otherwise would be obtained by
changing the parameters of the system adiabatically slowly.
Quenches with local time-dependent spatial inhomogeneity
have already been established as tools for bringing about a
shortcut to adiabaticity [88–93,106–109]. For homogeneous
phase transitions, the evolution becomes trivially adiabatic
when the characteristic KZ length scale of defects ξ̂ , given by
Eq. (2), becomes longer than the system size N for a particular
quench time τ adiab

Q . One can show that an inhomogeneous
transition with an adequately selected spatial slope can allow
one to achieve adiabaticity on shorter timescales than the
usual homogeneous quench timescales τ adiab

Q , thus achieving
the promised shortcut to adiabaticity.

Having thus outlined theoretical foundations, in the fol-
lowing, we illustrate the above general considerations with
two examples: the long-range extended Ising model in Sec. II
and the long-range Ising model in Sec. III. The former one
is equivalent, via the Jordan-Wigner transformation, to the
long-range Kitaev model. It is solvable by the Bogoliubov
transformation and, therefore, provides analytic insights into
the problem. In contrast, the latter requires extensive matrix
product state simulations, but appears more realistic from the
experimental point of view. With the theory substantiated by
the examples, in Sec. IV we discuss its practical implications
for shortcuts to adiabaticity. Finally, we summarize in Sec. V.

II. LONG-RANGE EXTENDED ISING CHAIN

The long-range extended Ising chain reads

H = −
N∑

n=1

(
hnσ

z
n +

N−n∑
r=1

Jrσ
x
n Zn,rσ

x
n+r

)
,

Zn,r =
{∏n+r−1

m=n+1 σ z
m when r > 1

1 when r = 1.
(10)

Here, hn is the strength of the transverse magnetic field, and Jr

is the interaction strength between any pair of spins separated
by a distance r. With the string operator Zn,r between the
spins, the model is equivalent to the long-range Kitaev model
[110] in Eq. (14). In this work, we will consider power-law

long-range interaction,

Jr = Nα

1

rα
, (11)

where Nα is a normalization constant. For α > 1, it is possible
to normalize

∑
r Jr = 1 with Nα expressed by the Riemann

zeta function, Nα = 1/ζ (α).
In the homogeneous case, we set the transverse field

strength,

hn = hc − ε, (12)

where ε = 0 corresponds to the quantum critical point at
hc = 1 between the paramagnetic (ε < 0) and ferromagnetic
(ε > 0) phases of the system in the thermodynamic limit.

Thanks to the string operators in the long-range interaction
terms, the model can be mapped to a quadratic free-fermionic
problem. After the Jordan-Wigner transformation,

σ x
n = (

cn + c†
n

) ∏
m<n

(1 − 2c†
mcm) ,

σ z
n = 1 − 2c†

ncn , (13)

introducing fermionic annihilation operators cn, the Hamilto-
nian (10) becomes

H =
N∑

n=1

[
2hnc†

ncn

−
N−n∑
r=1

Jr
(
c†

ncn+r + c†
nc†

n+r + H.c.
)]

, (14)

up to a constant additive term. This Hamiltonian is also known
as a long-range Kitaev chain [110]. It can be further reshaped
as

H =
N∑

n,m=1

c†
nAn,mcm + 1

2

N∑
n,m=1

(
c†

nBn,mc†
m + H.c.

)
, (15)

where

An,n = 2hn, An,m=n+r = −Jr = Am=n+r,n, (16)

Bn,n = 0, Bn,m=n+r = Jr = −Bm=n+r,n, (17)

for open boundary conditions.
The quadratic Hamiltonian can be diagonalized by a

Bogoliubov transformation to new fermionic Bogoliubov
quasiparticle annihilation operators,

γm =
N∑

n=1

(
u∗

nmcn + vnmc†
n

)
, (18)

where the N-dimensional vectors um and vm, for m =
1, . . . , N , satisfy the stationary Bogoliubov–de Gennes equa-
tions:

A · um + B · vm = ωmum,

−B · um − A · vm = ωmvm. (19)

Unlike the homogeneous case with periodic boundary con-
ditions, for which Eq. (19) can be reduced by a Fourier
transform to independent 2×2 blocks, we need to diagonalize
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the full 2N×2N matrix numerically. The spectrum of Eq. (19)
is given by ±ωm, where we fix ωm � 0. Following transfor-
mation (18), the Hamiltonian in Eq. (15) becomes

H =
N∑

m=1

ωm

(
γ †

mγm − 1

2

)
. (20)

Here, the Bogoliubov quasiparticles (18) are defined by the
eigenmodes (um, vm) with the positive eigenvalues +ωm.
Correspondingly, (u−

m , v−
m ) are the negative eigenmodes with

eigenvalues −ωm which define the Bogoliubov quasiparticles
γ −

m = ∑
n(u−

nm)∗cn + v−
nmc†

n.
The Hamiltonian commutes with the parity operator,

P =
N∏

n=1

σ z
n =

N∏
n=1

(
1 − 2c†

ncn
)
. (21)

In the following, we consider transitions that begin in the
ground state with positive parity. As the parity is conserved
during the unitary evolution, we can confine ourselves to
the subspace of states with an even number of Bogoliubov
quasiparticles.

In the thermodynamic limit N → ∞, the homogeneous
chain would have a zero-energy gap at the critical point at
ε = 0. There is a finite gap in a finite chain that goes to
zero as N−z when N → ∞. Here, z = α − 1 is the dynamical
critical exponent that governs the quasiparticle dispersion,
ωk ∝ kz, where k is the pseudomomentum. The correlation
length exponent is ν = 1/(α − 1). Notice that for α < 2, we
have z < 1, and the quasiparticle group velocity,

vk = dωk

dk
∝ kz−1, (22)

diverges for k → 0. As the softest modes with small k are
most excited in typical quench protocols, there is no sonic
horizon for the propagation of the soft excitations, as might
have been expected in a model with long-range interactions.

When we ramp down the parameter ε as a linear function
of time, given by Eq. (1), driving the Hamiltonian from the
initially prepared paramagnetic ground state to the ordered
phase, the resulting state ends up being defective as compared
to the instantaneous ground state at the end of the evolution.
These defects are quantified by the density of excited quasi-
particles that can be calculated at each time by projecting the
time-dependent Bogoliubov modes onto the corresponding
instantaneous static negative Bogoliubov modes,

dex(t ) = 1

N

N∑
m

N∑
n

|〈u−
m , v−

m |un(t ), vn(t )〉|2. (23)

The time-dependent modes [un(t ), vn(t )] follow in the
Heisenberg picture from the time-dependent variant of the
Bogoliubov–de Gennes equations (19); see, e.g., Ref. [45].

A. Homogeneous transition

After a homogeneous transition, we expect a finite density
of excitations,

dex ∝ ξ̂−1 ∝ τ
−ν/(1+zν)
Q = τ

−1/2(α−1)
Q , (24)

with the second equation for the extended long-range Ising
model considered here, and as long as the KZ length scale

FIG. 2. Density of excited quasiparticles at the end of the homo-
geneous quench in the long-range extended Ising model. The ramp
follows Eq. (26), crossing the critical point at quench time τQ. The
long-range interactions vanish with exponent α = 3/2. In (a), the
density decays like τ

−1/2(α−1)
Q for faster quenches, as predicted by

Eq. (24). Finite-size effects become visible in the limit of larger τQ.
We show their universal character in (b), where we present rescaled
density dexN in the function of rescaled quench time τQ/N2(α−1). The
collapse of the plots for different system sizes N demonstrates the
crossover from the KZ to the adiabatic regime predicted by Eq. (25).

ξ̂ � N (but still large enough to be in the scaling limit). For
slower quenches with

τQ � N (1+zν)/ν = N2(α−1), (25)

the density of the quasiparticles that are excited when crossing
the critical point should decay exponentially with τQ, sup-
pressed by a finite gap at the critical point.

In our numerical simulation, we ramp the transverse field
as

h(t ) = hc − hc tanh

(
t

hcτQ

)
, (26)

from h ≈ 2 at the initial time ti = −CτQhc to h ≈ 0 at the
final time t f = CτQhc, with C set to a large value. The ramp is
approximately linear, h(t ) ≈ hc − t

τQ
, near the critical hc = 1

crossed at t = 0, but additionally it reduces discontinuities in
the time derivative at the initial and final times in order to
suppress additional non-KZ excitations at the beginning of the
ramp. We set C = 3 in the case of the long-range extended
Ising model, which is large enough to obtain C-independent
results. We collect the results of the numerical simulations in
Fig. 2. In this and the following figures, we show a representa-
tive α = 3/2, though we have also explored other 1 < α < 2.
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For smaller α, the results become somewhat obscured by the
finite-size effects, and for larger α, they systematically tend
toward the effectively local model for α � 2, consistently with
the KZ scaling predictions.

B. Static transition in space

Before the dynamics of an inhomogeneous transition, it
is instructive first to study a transition in space [98–102].
Towards this end, we consider a static inhomogeneous field,

hn = hc + hc tanh
[
(n − nc)θ/hc

]
, (27)

that can be linearized near the critical point as hn ≈ hc +
θ (n − nc), with the slope equal to θ . Here, nc is the location
where the field reaches the critical value, hnc = hc. The sys-
tem is in the broken-symmetry phase for n < nc and in the
symmetric phase for n > nc.

In the local density approximation, the healing length
would diverge at the critical point at nc, and the local density
approximation must break down in the neighborhood of nc.
The KZ mechanism in space predicts the size of this neigh-
borhood to be

ξ̃ ∝ θ−ν/(1+ν) = θ−1/α. (28)

Rather than being nonanalytic at nc, the inhomogeneous
ground state is rounded off on this static-KZ length scale.
The same local density approximation would also predict
quasiparticles with zero eigenfrequencies to be localized at
nc. As gapless quasiparticles cannot be localized at a point,
the KZ mechanism in space predicts that their wave functions
are localized within a distance of ξ̃ around nc, and their eigen-
frequencies are finite and proportional to

�̃ ∝ ξ̃−z ∝ θ zν/(1+ν) = θ (α−1)/α. (29)

This KZ gap sets a scale for the energy of the lowest relevant
excitation: � = ω0 + ω1. Here, in the bulk, ω0 = 0 corre-
sponds to a Majorana mode describing the degeneracy of the
two ferromagnetic states to the right of nc, and ω1 ∝ �̃ is the
eigenfrequency of the Bogoliubov quasiparticle localized near
nc.

The gap � is shown in Fig. 3(a) as a function of slope θ

and system size N . There are three regimes of parameters.
The most interesting is the central one, where 1 � ξ̃ � N ,
where the KZ equation (29) applies. Indeed, when N � ξ̃ ,
i.e., the case for a ramp with small enough inclination θ , we
deal with an effectively homogeneous system at the critical
hn = hc. Consequently, the gap depends on N , rather than
ξ̃ , as � ∝ N−z. In the opposite extreme limit of ξ̃ � 1, i.e.,
when the ramp is effectively a step function, there is a finite
nonuniversal gap that does not depend either on N or on ξ̂ .

A wave function of the ω1 quasiparticle is shown in Fig. 4
for several different slopes in the intermediate regime 1 �
ξ̃ � N . The collapse demonstrates that the mode is indeed
localized near nc and its localization length is ξ̃ . This local-
ization length explains the crossover to the N � ξ̃ regime,
where N limits the quasiparticle size, and the frequency in a
finite system at the critical point scales as ω1 ∝ N−z.

FIG. 3. The energy gap as a function of the inclination of the
inhomogeneous front in the long-range extended Ising model. (a) The
energy gap � = ω0 + ω1 for α = 3/2 as a function of the slope θ

for different system sizes N . As predicted by Eq. (29), the central
part follows the scaling � ∝ θ1/3. (b) The gap for a very shallow—
practically homogeneous—ramp with θ = 2−20. The solid line is the
best fit � = 6.58 N−0.494, which is consistent with � ∝ N−z = N−1/2

in a finite homogeneous system. (c) Zoom on the central part of
(a) for N = 1001. The dashed line is the best fit � = 2.07 θ0.301,
which is close to the expected � = �̂ ∝ θ1/3 predicted by Eq. (29).

FIG. 4. Localization of the lowest-frequency quasiparticle mode
in the long-range extended Ising model. The main panel shows the
scaled density of the first-excited (m = 1) mode, ξ̂ (|unm|2 + |vnm|2),
as a function of the scaled distance from the critical point (n − nc )/ξ̂
for different slopes θ in the regime where 1 � ξ̃ � N . Here, we
set ξ̃ = θ−0.708 in order to obtain the best collapse (up to subleading
shift). This exponent is close to ξ̂ ∝ θ−2/3 predicted for α = 3/2. In
the inset, we show the full width at half maximum (FWHM) of the
density distribution as a function of θ for N = 1001. The dashed line
is the best fit, FWHM = 1.37 θ−0.708.
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FIG. 5. Density of excitation at the end of the inhomogeneous
quench in the long-range extended Ising model. (a) Final density
of quasiparticle excitations as a function of the front velocity v for
different slopes of the front θ . Here, α = 3/2 and N = 256. (b) The
curves in (a) are rescaled according to Eq. (35). Here we use v̂ ∝ �̂ξ̂ ,
as in Eq. (4), together with our best fits ξ̃ ∝ θ−0.708 and �̃ ∝ θ0.301

that yield ṽ ∝ θ−0.407.

The two scales, ξ̃ and �̃, can be combined into a velocity
scale,

ṽ = �̃ξ̃ ∝ θ (z−1)ν/(1+ν) = θ−(2−α)/α. (30)

As we show below, this velocity discriminates between di-
abatic and adiabatic inhomogeneous transitions. In contrast
to the models with short-range interactions [88], for α < 2
this threshold velocity is a decreasing function of θ . A more
shallow front makes the threshold velocity larger.

C. Inhomogeneous transition

Now, we make the ramp in Eq. (27) move across the system
with velocity v,

hn(t ) = hc + hc tanh
[
θ (n − vt )/hc

]
; (31)

see Fig. 1. The critical point is moving across the system
with velocity v. Close to the critical nc = vt , the front can
be approximated by a linear ramp, hn(t ) ≈ hc + θ (n − vt ).
We start with an initial ti = −Chc/θv and stop at final t f =
N/v + Chc/θv. The ramp, when watched locally at a fixed
n, looks like a homogeneous quench with a quench time τQ

satisfying

vθ = 1

τQ
. (32)

Figure 5 shows the final density of the excited Bogoliubov
quasiparticles after the ramp passes the whole chain. The
result depends on velocity v and the slope θ . For any slope,

when v is faster than ṽ in Eq. (9), the transition should be
effectively homogeneous because the finite gap �̃ is too small
to make it adiabatic. In this regime, a combination of Eqs. (24)
and (32) yields

dex ∝ (vθ )ν/(1+zν). (33)

It can be conveniently rewritten as a power law [111],

dexθ
−ν/(1+ν) ∝

(
v

ṽ

)ν/(1+zν)

, (34)

that for a long-range extended Ising model reduces to

dexθ
−1/α ∝

(
v

ṽ

)1/2(α−1)

. (35)

This power law—valid in the effectively homogeneous KZ
regime—motivates the scaled plot in Fig. 5 of dex/θ

1/α as a
function of v/ṽ. This scaling collapses the curves for different
slopes θ . The collapse demonstrates that indeed, ṽ is the
threshold velocity that discriminates between an effectively
homogeneous transition for v � ṽ and an adiabatic one for
v � ṽ. This conclusion is valid in the central regime, 1 �
ξ̂ � N , when the ramp is neither too shallow nor too steep.

III. LONG-RANGE ISING CHAIN

The long-range Ising chain reads

H = −
N∑

n=1

(
hnσ

z
n +

N−n∑
r=1

Jrσ
x
n σ x

n+r

)
. (36)

Here, Jr = 1
rα is the coupling strength between two spins sep-

arated by a distance r, and hn is the transverse field. Unlike its
extended form described in the previous section, the Hamilto-
nian (36) cannot be solved by mapping onto the free-fermionic
model. For that reason, even the most basic equilibrium re-
sults, including the location of the critical point and values of
the critical exponents z and ν, require sophisticated numerical
methods such as tensor network techniques [112]. The latter
have recently been used in Refs. [63,64] to obtain the data
on the critical points and show the validity of Kibble-Zurek
physics in long-range Ising models.

There are two important limits to this model that can be
exactly solved: for α → ∞, we retrieve the standard short-
range transverse Ising chain, and for α = 0, we recover the
Lipkin-Meshkov-Glick model with infinite-range couplings.
While the limiting cases have exact solutions, the interme-
diate range has to be solved numerically. Several studies
[113–116] show that three broad regimes exist depending on
the value of the coupling exponent α: the mean-field univer-
sality class regime for 1 < α < 5/3, the continuously varying
universality class regime for 5/3 < α < 3, and the Ising uni-
versality class regime for α > 3. In the mean-field regime,
the correlation length critical exponent ν = 1/(α − 1) and
the dynamical critical exponent z = (α − 1)/2 are given by
mean-field values. In the Ising regime, the critical exponents
ν = 1 and z = 1 are also well known. However, in the inter-
mediate regime with 5/3 < α < 3, the critical exponents ν

and z change monotonously with no analytical values known.
In the following, we will numerically determine the critical
exponents ν and z for a particular α in this intermediate regime
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FIG. 6. Rescaled energy gap as a function of the distance from
the critical point in the long-range Ising chain. Results for the homo-
geneous hn = hc − ε, where the gap is calculated after projecting the
Hamiltonian onto the subspace with even parity P; see Eq. (21). The
collapse around the minimum corroborates the obtained values of the
exponents ν ≈ 1.3 and z ≈ 0.48.

and use it to analyze the consequences of an inhomogeneous
driving of the transverse field. On the one hand, long-range
interaction effects are appreciable only for α < 2.25 [117].
On the other hand, finite-size effects are becoming strong
for smaller values of α, strongly limiting the possibility of
effective simulations. These, compounded with aesthetic rea-
sons, prompt us to focus on α = 2 for further calculations.
For completeness, we have also tested α = 2.2, arriving at the
same conclusions.

In the homogeneous case, we set the transverse field, hn =
hc − ε, with ε > 0 in the ferromagnetic phase and ε < 0 is the
paramagnetic case. To determine the value of hc for α = 2,
we perform a finite-size scaling of the position of the min-
imum of the energy gap (in the finite system) between the
ground state and the first-excited state [parity operator P in
Eq. (21) is also a good quantum number for a long-range Ising
model, so we first project the Hamiltonian onto the subspace
with even parity]. We obtain hc ≈ 2.528 and the correlation
length exponent ν ≈ 1.3. Subsequently, at the obtained hc, we
perform a finite-size scaling analysis of the gap to find the
dynamical exponent z ≈ 0.48; see the Appendix A. To further
corroborate the above results, in Fig. 6, we show the collapse
of the rescaled energy gaps near the critical point for different
system sizes.

In the following, we simulate homogeneous and inhomo-
geneous quenches through a critical point. The time evolution
is performed using the time-dependent variational principle
(TDVP) [118–120] for matrix product states, which allows
one to handle any Hamiltonian expressed as a matrix product
operator—including the one in Eq. (36). The ground states and
first-excited states have been obtained using standard density-
matrix renormalization-group algorithms [121].

A. Homogeneous transition

In this section, we perform a slow homogeneous quench
of the transverse field from the paramagnetic phase to the
ferromagnetic phase. We choose the same ramp as given in
Eq. (26), between the initial time ti = −ChcτQ and the final

FIG. 7. Residual energy per spin, Er/N , at the end of the homo-
geneous quench in the long-range Ising model. The ramp follows
Eq. (26), crossing the critical point at quench time τQ. The long-range
interactions Jr vanish with exponent α = 2. In (a), Er/N decays like
τ

−ν/(zν+1)
Q for faster quenches as predicted by Eq. (38). Finite-size ef-

fects become visible in the limit of larger τQ. We show their universal
character in (b), where we present rescaled density (Er/N )×N as a
function of quench time τQ rescaled by τ adiab

Q ∝ N
1+zν

ν = N1.25. The
collapse of the plots for different τQ demonstrates the crossover from
the KZ to the adiabatic regime predicted by Eq. (25).

time t f = ChcτQ. We choose C = 4, which ensures we start
and end quite deep in either phase.

To quantify the excitations induced by a quench, here we
employ the residual energy,

Er = E f − Egs, (37)

where Egs is the ground state energy of H (t f ) and E f =
〈�(t f )|H (t f )|�(t f )〉 is the system’s energy after the quench.
The expected KZ scaling prediction for slow quench (and in
the thermodynamic limit) reads

Er/N ∼ τ
−ν/(zν+1)
Q . (38)

In Fig. 7(a), we plot the residual energy per site, Er/N ,
for N = 32, 64, 128, and 256. Three regions can be clearly
visible: (a) for fast quenches, Er/N is at its maximum and does
not show apparent dependence on size N ; (b) the intermediate
region follows the quantum Kibble-Zurek scaling of τ−0.80

Q
with z ≈ 0.48 and ν ≈ 1.3; and (c) the exponential decay is
expected upon increasing τQ further (we cannot extract this
due to the limited accuracy of our simulations). The transition
between (b) and (c) is expected when ξ̂ ∼ N . Indeed, upon
rescaling τQ with τ adiab

Q [see Eq. (25)], and simultaneously the
energy density consistently with the scaling in Eq. (38) [giving
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FIG. 8. Energy gap � as a function of inclination parameter of
the inhomogeneous front θ for different system sizes N in the long-
range Ising chain. The external field follows Eq. (31) and the gap
is calculated in the even-parity subspace. As predicted by Eq. (39),
the central part is consistent with the KZM-in-space prediction � ∝
θ

zν
1+ν ≈ θ0.27.

NEr/N = Er], the curves for different system sizes collapse in
Fig. 7(b). This signifies the crossover from the KZ regime to
the adiabatic regime.

The physical reason for these different regimes is the
participation weight of the quenched state among the differ-
ent energy levels. For the fast quenches, the dynamics take
place among a vast proportion of excited energy levels. For
the intermediate dynamics, only the low-lying excited states
participate, allowing one to observe universal behavior. The
exponential decay for the largest τQ’s reflects the Landau-
Zener formula, which denotes the probability for a particle
in the ground state to jump into the first-excited state as a
function of the driving timescale τQ in a single avoided-level
crossing.

B. Transition in space

Similarly, as for the extended case, here we consider the
static inhomogeneous field given by Eq. (27). In Fig. 8,
we plot the energy gap � between the ground state and
first-excited states of the Hamiltonian (after projecting the
latter onto an even-parity subspace) for system sizes N =
51, 101, and 201. Following the analysis in the extended Ising
model, we identify the extent of the intermediate region. This
instructs us on choosing the inclination range for further sim-
ulations of the inhomogeneous driving. The KZ prediction for
the dependence of the energy gap on the inclination θ in the
intermediate region is

�̂ ∝ θ zν/(1+ν) = θ0.27. (39)

As can be seen in Fig. 8, it is satisfied to an appreciable extent.

C. Inhomogeneous transition

Finally, we use the same profile [see Eq. (31)] to drive an
inhomogeneous quench across the system. As discussed in
Sec. II C, a single lattice site n effectively undergoes a local
change of transverse field from hn ≈ 2hc to hn ≈ 0 (with the
actual moment of the transition delayed from site to site).

FIG. 9. Residual energy per spin, Er/N , at the end of the inho-
mogeneous quench in the long-range Ising model. The ramp follows
Eq. (31), crossing the critical point at an inclination θ and veloc-
ity v of the inhomogeneous front. The long-range interactions Jr

vanish with exponent α = 2. In (a), Er/N is plotted for several
values of θ = 2−1, 2−2, . . . , 2−6. The plots are shown in a log-log
scale. We show their universal character in (b), where we present
rescaled density θ− ν

1+ν Er/N as a function of velocity v scaled by
ṽ ∼ θ (z−1)ν/(1+ν ) ≈ θ−0.29. The collapse of the plots for different θ ’s
demonstrates the existence of a characteristic crossover velocity ṽ

which separates the diabatic homogeneous regime and the adiabatic
inhomogeneous regime.

In Fig. 9(a), we show the final residual energy as a function
of velocity v for different values of θ . The latter has been
chosen by keeping in mind the extent of the intermediate
region in Fig. 8. The residual energy vanishes quickly below
the characteristic ṽ.

To quantify the universal behavior, we proceed similarly
as in the previous section. Equations (4) and (33) provide us
with two effective scales: one for velocity ṽ ∼ θ (z−1)ν/(1+ν)

and one for the residual energy Er/N ∼ θ
ν

1+ν . Upon rescaling
according to these formulas [see Fig. 9(b)], curves obtained
for different slopes θ collapse. The collapse corroborates the
existence of a characteristic KZ velocity scale, ṽ. A velocity
v � ṽ would result in an effectively homogeneous transition,
while v � ṽ would lead to an adiabatic transition.

IV. SHORTCUT TO ADIABATICITY

The minimal time needed for the ramp to cross the system
adiabatically, for a given inclination θ , is

T = N

ṽ
+ A

θ ṽ
. (40)
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Here, N/ṽ is the time needed for the critical point to cross the
chain of length N with velocity ṽ. The second term, with A =
O(1), is an overhead needed to begin/end the ramp with the
whole chain deep in the symmetric/symmetry-broken phase.
For instance, when we evolve the right-moving tanh ramp in
Eq. (31) from an initial position (such that h = 1 + ε0 on the
left end of the chain) to a final position (such that h = 1 − ε0

on the right end of the chain), then A = 2 tanh−1(ε0). Mini-
mization of T with respect to θ , for z < 1, yields the optimal
slope

θopt = A
1 + zν

(1 − z)ν
N−1. (41)

For this slope, the optimal time is

Topt ∝ N (1+zν)/(1+ν). (42)

It is the shortest time that allows for adiabatic evolution with
an inhomogeneous ramp moving at a constant velocity of ṽ.
We compare this time with the optimal time for a homo-
geneous quench to see if an inhomogeneous quench allows
for any advantage. The homogeneous transition becomes adi-
abatic for quench times such that KZ correlation length ξ̂

becomes comparable with the system size N . Consequently,
the minimal adiabatic quench time is

τ adiab
Q ∝ N (1+zν)/ν . (43)

The ratio of the optimal inhomogeneous to the optimal homo-
geneous time is

Topt

τ adiab
Q

= N−(1+zν)/ν(1+ν). (44)

As we can see, the optimal inhomogeneous transition
is always advantageous over the optimal homogeneous
quench, which we further illustrate below with our two
examples. In this analysis, we limit ourselves to consider
only homogeneous quenches that have constant τQ. Having
inhomogeneous-in-time quench—adjusting the quench rate to
the instantaneous size of the gap, e.g., following a power-law
quench [54]—would give further opportunities for homo-
geneous quenches. However, this would require additional
precise knowledge regarding the exact position of the mini-
mum and the behavior of the gap around it, as well as precise
control. Here, we focus on comparing more robust strategies,
where such detailed knowledge is not needed.

A. Long-range extended Ising chain

The optimal slope satisfies

Nθopt = 2A
(α − 1)

(2 − α)
. (45)

In the limit of effectively local interaction (when α → 2−),
the optimal ramp becomes very steep compared to the chain’s
length. That is consistent with the results for the local
transverse-field Ising chain where a steep ramp quenching a
few spins at a time was found to be the optimal one—the
many-body critical (and universal) nature of the problem is
lost in the limit of one-spin-at-a-time quench, i.e., θ → 1, and
this type of driving turns out to be suboptimal [90]. In the

opposite, nonlocal limit, when α → 1+, the optimal ramp be-
comes virtually homogeneous compared to the chain’s length.
In any case, the optimal time is

Topt ∝ N2(α−1)/α. (46)

This is to be compared with the optimal homogeneous quench
time,

τ adiab
Q ∝ N (1+zν)/ν= N2(α−1). (47)

Their ratio is

Topt

τ adiab
Q

∝ N−2(α−1)2/α. (48)

For 1 < α < 2, it is always advantageous to use the optimal
inhomogeneous quench over the homogeneous one. In the
local limit, α → 2−, the ratio becomes proportional to 1/N .
In the nonlocal limit, α → 1+, it tends to O(1). The inhomo-
geneous transition has no advantage when one increases the
nonlocality of interactions in which case, in fact, there is lit-
tle difference between the homogeneous and inhomogeneous
transitions.

B. Long-range Ising chain

When α > 3, we end up in the Ising universality class
where, just as in the local limit of the long-range extended
Ising chain, the inhomogeneous advantage Topt/τ

adiab
Q ∝ 1/N

is achieved for a steep ramp where spins are quenched a
few at a time. On the other hand, when 1 < α < 5/3, in
the mean-field universality class regime with ν = (α − 1)−1

and z = α−1
2 , Topt/τ

adiab
Q ∝ N−3(α−1)2/2α and the inhomoge-

neous quench shows a clear advantage over the homogeneous
one. However, as in the extended long-range Ising model, in
the nonlocal limit, when α → 1+, the advantage disappears.
When all pairs of spins are coupled with equal strength,
making the position of a spin along the chain a mere label,
then there is no difference between the homogeneous and
inhomogeneous transitions.

In the continuously varying universality class regime for
5/3 < α < 3, we considered a representative α = 2. With
the numerically estimated critical exponents, we obtain the
optimal slope,

Nθopt = 2.40A, (49)

which allows for the optimal inhomogeneous-driving time,

Topt ∝ N0.70. (50)

Comparing with the minimal adiabatic homogeneous quench
time, we get

Topt

τ adiab
Q

∝ N−0.54. (51)

Therefore, carefully optimized inhomogeneous quench pro-
vides a clear advantage as a shortcut to adiabaticity.

V. SUMMARY

We demonstrated a clear crossover between the adiabatic
regime of an inhomogeneous transition and the Kibble-Zurek
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regime, where the transition proceeds like in a uniform sys-
tem. The latter regime persists despite the nonlocal nature of
the interaction. In principle, irrespective of the speed of the
critical front, the interaction might be able to instantaneously
communicate the initial choice of symmetry breaking behind
the critical front to the spins ahead of the front and bias
them to make the same choice when crossing the critical
point. As a consequence, excitations could have been expected
to be suppressed in the symmetry-broken phase behind the
front. However, this instantaneous bias becomes irrelevant
when the critical front’s spatial velocity starts exceeding ṽ—a
characteristic speed derived from the static inhomogeneous
KZ mechanism. We support this observation with numerical
studies in two long-range models, one integrable and one
nonintegrable, corroborating its universal character.

Even though ṽ is not an upper, but a lower speed limit
of excitations, for a critical front slower than ṽ, the inho-
mogeneous transition becomes adiabatic in a similar way as
for local interactions where the finite speed of excitations
limits the communication across the critical front. The slope
of the critical front can be optimized to achieve an adiabatic
transition in timescales that are shorter than the shortest time
of the adiabatic transition achievable by a uniform protocol.
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APPENDIX: OBTAINING CRITICAL POINT
AND CRITICAL EXPONENTS OF THE

LONG-RANGE ISING MODEL

In the main text, we have already emphasized that the
analytical determination of critical points and exponents is not
feasible in a long-range Ising Hamiltonian. Here, we resort to
density-matrix renormalization-group techniques [121] using
matrix product states to calculate the energy gap between the

FIG. 10. (a) Location of the minimal gap, hc(N ), as a function
of the system size N in the long-range Ising chain. The fit gives
an estimate of the critical point hc ≈ 2.528 and the correlation
length exponent ν ≈ 1.3 for coupling Jr following a power law with
exponent α = 2. (b) The finite-size scaling of the energy gap �c

calculated at the critical point hc. The slope of the best fit gives an
estimate of the dynamical exponent z ≈ 0.48.

ground state and the first relevant excited state. The location of
the minimum of the gap in the thermodynamic limit N → ∞
(and for infinite bond dimension χ ) would return the exact lo-
cation of the critical point. Having inhomogeneous systems in
mind, we focus on finite systems performing finite-size scal-
ing (and with maximal bond dimension χmax = 200, which is
large enough for the required precision). In particular, we look
at the location of the minimal gap, hc(N ), for the given system
size N . It is expected that

hc(N ) = lim
N→∞

hc(N ) + cN−1/ν . (A1)

To prevent the over-representation of smaller system sizes,
during fitting, we add a weight proportional to N to each point,
following the strategy by Jaschke et al. [63]. The nonlinear
fit predicts hc ≈ 2.528 and ν ≈ 1.3. Next, we determine the
dynamic exponent z through finite-size scaling of the energy
gap at the critical point [see Fig. 10(b)] and obtain z ≈ 0.48.
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Phys. Rev. Lett. 106, 135301 (2011).

[12] A. Das, J. Sabbatini, and W. H. Zurek, Sci. Rep. 2, 352 (2012).
[13] J. Sonner, A. del Campo, and W. H. Zurek, Nat. Commun. 6,

7406 (2015).
[14] P. M. Chesler, A. M. García-García, and H. Liu, Phys. Rev. X

5, 021015 (2015).
[15] I.-K. Liu, J. Dziarmaga, S.-C. Gou, F. Dalfovo, and N. P.

Proukakis, Phys. Rev. Res. 2, 033183 (2020).
[16] I. Chung, R. Durrer, N. Turok, and B. Yurke, Science 251,

1336 (1991).
[17] M. J. Bowick, L. Chandar, E. A. Schiff, and A. M. Srivastava,

Science 263, 943 (1994).
[18] V. M. H. Ruutu, V. B. Eltsov, A. J. Gill, T. W. B. Kibble, M.

Krusius, Y. G. Makhlin, B. Plaçais, G. E. Volovik, and W. Xu,
Nature (London) 382, 334 (1996).

[19] C. Bäuerle, Y. M. Bunkov, S. N. Fisher, H. Godfrin, and G. R.
Pickett, Nature (London) 382, 332 (1996).

[20] R. Carmi, E. Polturak, and G. Koren, Phys. Rev. Lett. 84, 4966
(2000).

[21] R. Monaco, J. Mygind, and R. J. Rivers, Phys. Rev. Lett. 89,
080603 (2002).

[22] A. Maniv, E. Polturak, and G. Koren, Phys. Rev. Lett. 91,
197001 (2003).

[23] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and
D. M. Stamper-Kurn, Nature (London) 443, 312 (2006).

[24] C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J.
Davis, and B. P. Anderson, Nature (London) 455, 948 (2008).

[25] R. Monaco, J. Mygind, R. J. Rivers, and V. P. Koshelets,
Phys. Rev. B 80, 180501(R) (2009).

[26] D. Golubchik, E. Polturak, and G. Koren, Phys. Rev. Lett. 104,
247002 (2010).

[27] G. D. Chiara, A. del Campo, G. Morigi, M. B. Plenio, and A.
Retzker, New J. Phys. 12, 115003 (2010).

[28] M. Mielenz, J. Brox, S. Kahra, G. Leschhorn, M. Albert,
T. Schaetz, H. Landa, and B. Reznik, Phys. Rev. Lett. 110,
133004 (2013).

[29] S. Ulm, J. Roßnagel, G. Jacob, C. Degünther, S. T. Dawkins,
U. G. Poschinger, R. Nigmatullin, A. Retzker, M. B. Plenio, F.
Schmidt-Kaler, and K. Singer, Nat. Commun. 4, 2290 (2013).

[30] K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin, T.
Burgermeister, D. M. Meier, K. Kuhlmann, A. Retzker, M. B.
Plenio, W. H. Zurek, A. del Campo, and T. E. Mehlstäubler,
Nat. Commun. 4, 2291 (2013).

[31] S. C. Chae, N. Lee, Y. Horibe, M. Tanimura, S. Mori, B.
Gao, S. Carr, and S.-W. Cheong, Phys. Rev. Lett. 108, 167603
(2012).

[32] S.-Z. Lin, X. Wang, Y. Kamiya, G.-W. Chern, F. Fan, D. Fan,
B. Casas, Y. Liu, V. Kiryukhin, W. H. Zurek, C. D. Batista, and
S.-W. Cheong, Nat. Phys. 10, 970 (2014).

[33] S. M. Griffin, M. Lilienblum, K. T. Delaney, Y. Kumagai, M.
Fiebig, and N. A. Spaldin, Phys. Rev. X 2, 041022 (2012).

[34] S. Donadello, S. Serafini, M. Tylutki, L. P. Pitaevskii, F.
Dalfovo, G. Lamporesi, and G. Ferrari, Phys. Rev. Lett. 113,
065302 (2014).

[35] S. Deutschländer, P. Dillmann, G. Maret, and P. Keim,
Proc. Natl. Acad. Sci. USA 112, 6925 (2015).

[36] L. Chomaz, L. Corman, T. Bienaimé, R. Desbuquois, C.
Weitenberg, S. Nascimbène, J. Beugnon, and J. Dalibard,
Nat. Commun. 6, 6162 (2015).

[37] V. Yukalov, A. Novikov, and V. Bagnato, Phys. Lett. A 379,
1366 (2015).

[38] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic,
Science 347, 167 (2015).

[39] I.-K. Liu, S. Donadello, G. Lamporesi, G. Ferrari, S.-C. Gou,
F. Dalfovo, and N. P. Proukakis, Commun. Phys. 1, 24 (2018).

[40] J. Rysti, S. Autti, G. E. Volovik, and V. B. Eltsov,
arXiv:1906.11453.

[41] B. Damski, Phys. Rev. Lett. 95, 035701 (2005).
[42] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95,

105701 (2005).
[43] A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005).
[44] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
[45] J. Dziarmaga, Adv. Phys. 59, 1063 (2010).
[46] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,

Rev. Mod. Phys. 83, 863 (2011).
[47] R. Schützhold, M. Uhlmann, Y. Xu, and U. R. Fischer,

Phys. Rev. Lett. 97, 200601 (2006).
[48] H. Saito, Y. Kawaguchi, and M. Ueda, Phys. Rev. A 76,

043613 (2007).
[49] V. Mukherjee, U. Divakaran, A. Dutta, and D. Sen, Phys. Rev.

B 76, 174303 (2007).
[50] F. M. Cucchietti, B. Damski, J. Dziarmaga, and W. H. Zurek,

Phys. Rev. A 75, 023603 (2007).
[51] L. Cincio, J. Dziarmaga, M. M. Rams, and W. H. Zurek,

Phys. Rev. A 75, 052321 (2007).
[52] A. Polkovnikov and V. Gritsev, Nat. Phys. 4, 477 (2008).
[53] K. Sengupta, D. Sen, and S. Mondal, Phys. Rev. Lett. 100,

077204 (2008).
[54] D. Sen, K. Sengupta, and S. Mondal, Phys. Rev. Lett. 101,

016806 (2008).
[55] J. Dziarmaga, J. Meisner, and W. H. Zurek, Phys. Rev. Lett.

101, 115701 (2008).
[56] B. Damski and W. H. Zurek, Phys. Rev. Lett. 104, 160404

(2010).
[57] C. De Grandi, V. Gritsev, and A. Polkovnikov, Phys. Rev. B

81, 012303 (2010).
[58] F. Pollmann, S. Mukerjee, A. G. Green, and J. E. Moore,

Phys. Rev. E 81, 020101(R) (2010).
[59] B. Damski, H. T. Quan, and W. H. Zurek, Phys. Rev. A 83,

062104 (2011).
[60] W. H. Zurek, J. Phys.: Condens. Matter 25, 404209 (2013).
[61] S. Sharma, S. Suzuki, and A. Dutta, Phys. Rev. B 92, 104306

(2015).
[62] A. Dutta and A. Dutta, Phys. Rev. B 96, 125113 (2017).
[63] D. Jaschke, K. Maeda, J. D. Whalen, M. L. Wall, and L. D.

Carr, New J. Phys. 19, 033032 (2017).
[64] R. Puebla, O. Marty, and M. B. Plenio, Phys. Rev. A 100,

032115 (2019).
[65] A. Sinha, M. M. Rams, and J. Dziarmaga, Phys. Rev. B 99,

094203 (2019).

214203-11

https://doi.org/10.1103/PhysRevD.62.065005
https://doi.org/10.1103/PhysRevLett.99.120407
https://doi.org/10.1103/PhysRevD.81.025017
https://doi.org/10.1088/1367-2630/12/9/095020
https://doi.org/10.1103/PhysRevLett.106.135301
https://doi.org/10.1038/srep00352
https://doi.org/10.1038/ncomms8406
https://doi.org/10.1103/PhysRevX.5.021015
https://doi.org/10.1103/PhysRevResearch.2.033183
https://doi.org/10.1126/science.251.4999.1336
https://doi.org/10.1126/science.263.5149.943
https://doi.org/10.1038/382334a0
https://doi.org/10.1038/382332a0
https://doi.org/10.1103/PhysRevLett.84.4966
https://doi.org/10.1103/PhysRevLett.89.080603
https://doi.org/10.1103/PhysRevLett.91.197001
https://doi.org/10.1038/nature05094
https://doi.org/10.1038/nature07334
https://doi.org/10.1103/PhysRevB.80.180501
https://doi.org/10.1103/PhysRevLett.104.247002
https://doi.org/10.1088/1367-2630/12/11/115003
https://doi.org/10.1103/PhysRevLett.110.133004
https://doi.org/10.1038/ncomms3290
https://doi.org/10.1038/ncomms3291
https://doi.org/10.1103/PhysRevLett.108.167603
https://doi.org/10.1038/nphys3142
https://doi.org/10.1103/PhysRevX.2.041022
https://doi.org/10.1103/PhysRevLett.113.065302
https://doi.org/10.1073/pnas.1500763112
https://doi.org/10.1038/ncomms7162
https://doi.org/10.1016/j.physleta.2015.02.033
https://doi.org/10.1126/science.1258676
https://doi.org/10.1038/s42005-018-0023-6
http://arxiv.org/abs/arXiv:1906.11453
https://doi.org/10.1103/PhysRevLett.95.035701
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevB.72.161201
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/PhysRevLett.97.200601
https://doi.org/10.1103/PhysRevA.76.043613
https://doi.org/10.1103/PhysRevB.76.174303
https://doi.org/10.1103/PhysRevA.75.023603
https://doi.org/10.1103/PhysRevA.75.052321
https://doi.org/10.1038/nphys963
https://doi.org/10.1103/PhysRevLett.100.077204
https://doi.org/10.1103/PhysRevLett.101.016806
https://doi.org/10.1103/PhysRevLett.101.115701
https://doi.org/10.1103/PhysRevLett.104.160404
https://doi.org/10.1103/PhysRevB.81.012303
https://doi.org/10.1103/PhysRevE.81.020101
https://doi.org/10.1103/PhysRevA.83.062104
https://doi.org/10.1088/0953-8984/25/40/404209
https://doi.org/10.1103/PhysRevB.92.104306
https://doi.org/10.1103/PhysRevB.96.125113
https://doi.org/10.1088/1367-2630/aa65bc
https://doi.org/10.1103/PhysRevA.100.032115
https://doi.org/10.1103/PhysRevB.99.094203


SINHA, SADHUKHAN, RAMS, AND DZIARMAGA PHYSICAL REVIEW B 102, 214203 (2020)

[66] M. M. Rams, J. Dziarmaga, and W. H. Zurek, Phys. Rev. Lett.
123, 130603 (2019).

[67] S. Mathey and S. Diehl, Phys. Rev. Res. 2, 013150 (2020).
[68] M. Białończyk and B. Damski, J. Stat. Mech. (2020) 013108.
[69] D. Sadhukhan, A. Sinha, A. Francuz, J. Stefaniak, M. M.

Rams, J. Dziarmaga, and W. H. Zurek, Phys. Rev. B 101,
144429 (2020).

[70] B. S. Revathy and U. Divakaran, J. Stat. Mech. (2020) 023108.
[71] D. Rossini and E. Vicari, Phys. Rev. Res. 2, 023211 (2020).
[72] K. Hódsági and M. Kormos, SciPost Phys. 9, 055 (2020).
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