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Abstract – We study the two-dimensional phase transition of a driven-dissipative system of
exciton-polaritons under non-resonant pumping. Stochastic calculations are used to investigate
the Berezinskii-Kosterlitz-Thouless–like phase diagram for experimentally realistic parameters,
with a special attention to the non-equilibrium features.

focus  article Copyright c© 2021 EPLA

Phase transitions are ubiquitous in nature, both within the
classical and quantum realms. Dimensionality and sym-
metry are crucial ingredients for the determination of the
types of phase transition (PT) that a given system may
undergo. In a three-dimensional system at thermal equi-
librium, Bose particles can exhibit off-diagonal long range
order (ODLRO) when driven by a control parameter below
a specific critical temperature. This phenomenon is asso-
ciated with the appearance of a Bose-Einstein Condensate
(BEC), predicted to occur in both uniform and confined
systems [1]. In two-dimensional (2D) systems, instead,
the presence of thermal fluctuations destroys ODLRO,
compromising the existence of a possible PT to an or-
dered state at any finite temperature [2]. Nevertheless,
it has been shown that a different kind of PT to a quasi-
condensate state may still occur, with the decay of correla-
tion functions going from an exponential to a much slower
algebraic law [3,4]. This Berezinskii-Kosterlitz-Thouless
(BKT) transition can be pictorially understood in terms of
the thermally activated vortices, which change their spa-
tial distribution when crossing the critical temperature: at

(a)Contribution to the Focus Issue Turbulent Regimes in Bose-
Einstein Condensates edited by Alessandra Lanotte, Iacopo
Carusotto and Alberto Bramati.

high temperature they proliferate and are freely moving,
at low temperatures they are much less numerous and are
bound in pairs, so their detrimental impact on the coher-
ence gets dramatically suppressed.
The physics becomes even more intriguing when one

moves away from isolated systems to driven-dissipative
ones [5–7], whose stationary state is no longer determined
by thermal equilibrium, but by a non-equilibrium bal-
ance of driving and dissipation. A most celebrated plat-
form to study this physics is based on exciton-polaritons
in semiconductor microcavities, namely bosonic quasipar-
ticles that arise from the strong coupling between light
and matter excitations. These quasiparticles have a finite
lifetime, which calls for some external pumping to con-
tinuously compensate for losses [5]. As in standard equi-
librium BEC, for sufficiently high densities a macroscopic
fraction of the polariton gas condenses into a single mo-
mentum state and order develops across the whole finite
sample [8]. In spite of this apparent simplicity, the full
characterization of the PT and of its critical fluctuations
in terms of universality classes is still at the centre of an
intense debate, in particular given their intrinsically 2D
nature. A strong attention has been devoted, both exper-
imentally [1,7,9–11] and theoretically [3,12–14] to assess
up to what point this PT can be described in terms of
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the standard BKT theory of equilibrium systems. From
the early days of this field, dramatic consequences of non-
equilibrium effects has been highlighted in polariton sys-
tems, from the non-trivial shape of the condensate in real
and momentum spaces [15,16] to the diffusive Goldstone
mode in the collective excitation spectrum of polariton
condensates with small polariton lifetime [5,17]. Further-
more, the possibility of breaking BKT algebraic decay of
coherence in the quasi-ordered phase at very large dis-
tances has also been pointed out in [18]. Except for specific
cases [19], this occurs however on length scales well beyond
the experimental possibilities. Still, it has been argued
that for realistic system sizes the non-equilibrium char-
acter is responsible for an algebraic decay of the spatial
coherence with an exponent exceeding the upper bound of
0.25 of equilibrium BKT theory [19,20] and for the ratio
between spatial and temporal correlation exponents be-
ing equal to 2 [17,21] instead of 1 as in the case of an
equilibrium-like system [9].

These theoretical predictions suggest that measure-
ments of temporal coherence are a key ingredient to char-
acterize the nature of the PT: while early works measured
exponential or Gaussian decays of temporal coherence, not
compatible with a BKT transition [9,20,22–25], and pos-
sibly related to single-mode physics [26], power-law decay
of temporal correlations has been reported in recent works
with improved samples [9]. Since the long polariton life-
time in ref. [9] exceeds other characteristic time scales, one
can reasonably assume the system to be in an equilibrium-
like regime [9,11]. On the other hand, to date there is no
direct numerical or experimental measurement of a really
non-equilibrium regime where the temporal and spatial
algebraic exponents are different.

Motivated by these open questions, in this work we un-
dertake a detailed numerical study of the PT exhibited
by an incoherently pumped (IP) 2D polariton fluid un-
der realistic experimental parameters. We numerically in-
vestigate the non-equilibrium steady-state (NESS) phase
diagram as a function of the pump power and we charac-
terize it in terms of the spatial and temporal correlations,
the spectrum of the collective excitation modes and the
spatial distribution of topological defects. Our predictions
shine new light on fundamental properties of the PT and
on its non-equilibrium nature.

Theoretical modelling. – We describe the collec-
tive dynamics of the polariton fluid through a generalized
stochastic Gross-Pitaevskii equation for the 2D polariton
field as a function of the position r = (x, y) and time t,
restricting our investigation here to the simplest case of
a spatially homogeneous system with periodic boundary
conditions. The equation describes the effective dynam-
ics of the incoherently pumped lower polariton field ψ =
ψ(r, t) [5,27] and includes the complex relaxation processes
by means of a frequency-selective pumping source [28–30].
The model, which can be derived from both truncated

Wigner (TW) and Keldysh field theory [5,17] reads (h̄ = 1)

idψ =

[
− ∇2

2m
+ g|ψ|2− +

i

2

(
P

1 +
|ψ|2−
ns

− γ

)

+
1

2

P

Ω

∂

∂t

]
ψdt+ dW, (1)

where m is the polariton mass, g is the polariton-polariton
interaction strength, γ is the polariton loss rate (inverse
of the polariton lifetime), P the strength of the inco-
herent pumping providing the gain, ns is the satura-
tion density, and Ω sets the characteristic scale of the
frequency-dependence of gain. The renormalized density
|ψ|2− ≡ (|ψ|2 − 1/(2dV )) includes the subtraction of the
Wigner commutator contribution (where dV = a2 is the
volume element of our 2D grid of spacing a). The zero-
mean white Wiener noise dW fulfils 〈dW (r, t)dW (r′, t)〉 =
0, 〈dW ∗(r, t)dW (r′, t)〉 = [(P + γ)/2]δr,r′dt, where the
nonlinear density term is neglected since |ψ|2/ns � 1. To
describe the physics of the model we start by consider-
ing eq. (1) at a mean-field (MF) level, i.e., in the absence
of the Wiener noise. As widely discussed in the litera-
ture [27,31], for the case of a frequency-independent pump
(Ω = ∞), a condensate with density |ψSS|2 = ns(P/γ− 1)
is expected to appear for pump strengths above threshold
P > PMF = γ and to grow linearly in P with a slope
determined by the saturation density ns. For a frequency-
selective pump (Ω �= ∞), the NESS density loses its linear
dependence on P , and takes the slightly more complicated
form |ψSS|2 = ns[P/(Pg|ψSS|2/Ω+ γ)− 1] [31].
The effect of small excitations around the bare conden-

sate steady-state solution can be described by means of the
linearized Bogoliubov approximation [1,5]. By linearizing
the deterministic part of eq. (1) around the steady state
solution ψ(r, t) = ψSS + δψ(r, t)e−iωt we obtain a pair of
coupled Bogoliubov equations for the field δψ(r, t) and its
complex conjugate δψ∗(r, t). Thanks to translational in-
variance, the different k-modes are decoupled, so we can
move to Fourier space and define a k-dependent Bogoli-
ubov matrix Lk [29,31],

Lk =

(
Λ(εk + μ− iΓ) Λ(μ− iΓ)

Λ∗(−μ− iΓ) Λ∗(−εk − μ− iΓ)

)
, (2)

with Γ = γ(P − γ)/2P , the free-particle dispersion εk =
k2/2m, the interaction energy μ = g|ψSS|2 and Λ = (γa +
iγb) with γa = 1/[1 + (P/(2Ω))2] and γb = −Pγa/2Ω.
The diagonalization of Lk eventually leads to the double-
branched excitation spectrum

ω±
k = −i[γaΓ− γb(εk + μ)]

±
√

Γ2γa2 + γb2μ2 − 2Γγaγb (εk + μ)− γa2εk (εk + 2μ).

(3)

At high momenta k this spectrum recovers a single-
particle behaviour with parabolic dispersion, while the
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Fig. 1: Real part (blue) and imaginary part (red) of the Bo-
goliubov excitation spectrum (3) calculated for the parame-
ters of the case IPΩ=50 (whose density is plotted in fig. 2 as a
blue curve), but where the relative pump strength takes now
the values P/PMF = 2, 6, 10, 14, 18, 22, increased as indi-
cated by the colour gradients. The corresponding real part for
P/PMF = 1.06 is shown in fig. 5(iv) as a blue curve.

frequency dependence of pumping results in an increas-
ing linewidth for growing k. For small k → 0, the
Goldstone mode describing long-wavelength twists of the
condensate phase and associated to the spontaneously bro-
ken U(1) symmetry exhibits the diffusive behaviour typi-
cal of driven-dissipative systems [5], rather than the sonic
one characteristic of their equilibrium counterpart [1].

This physics is illustrated in fig. 1, where the predic-
tion of eq. (3) is plotted for increasing values of the pump
strength P . The value of the critical momentum

kc =

√√√√2m

[
−Γγb

γa
− μ+

√
(Γ2 + μ2)(γa2 + γb2)

γa

]

(4)
separating the diffusive behaviour from the sonic one at
higher k increases as the system moves away from the
threshold point PMF.

The non-equilibrium Berezinskii-Kosterlitz-
Thouless phase diagram. – We simulate the system
dynamics by numerically integrating in time the stochastic
differential equations for the polariton field shown in (1);
numerical details and methods are reported in the Supple-
mentary Material Supplementarymaterial.pdf (SM).
In fig. 2 we show the typical driven-dissipative BKT PT-
diagram of an incoherently pumped polariton condensate,
in which the different observables are shown as a function
of the pump strength P . This is characterized by two
distinct phases: a) a disordered phase displaying a low
density of polaritons, an exponential decay of spatial
correlations and a plasma of unbound free vortices;
b) a superfluid phase displaying a significant density of

Fig. 2: Non-equilibrium steady-state phase diagram show-
ing mean-field (MF) and averaged stochastic density (sGPE)
(dashed and solid coloured curves, respectively) in logarithmic-
linear scale. For each set of parameters, we associate a
colour. Blue (labelled as IPΩ=50): Ω = 50γ = 11.09 ps−1 and
ns = 500μm−2. Green (labelled as IPns=1500

Ω=∞ ): Ω = ∞ and
ns = 1500μm−2. Violet (labelled as IPΩ=∞): Ω = ∞ and ns =
500μm−2. For each set of parameters, the BKT threshold is
shown as a vertical coloured line. The vertical gray line shows
the mean-field threshold PMF = 1. The average number of
vortices 〈Nv〉 for the IPΩ=50 case is depicted as a red curve.
The inset shows a comparison between the mean-field (dashed
black line) and the averaged stochastic density (blue solid line)
for the IP(Ω=50) case, plotted in linear-linear scale.

polaritons, an algebraic decay of spatial correlations and a
low density of vortices, mostly bound in vortex-antivortex
pairs [9,19,30].
Our first step in the investigation of the IP polari-

ton PT was to clarify the impact of fluctuations intro-
duced by the stochastic noise on the average density. The
mean-field (stochastic) density |ψ|2 =

∫
|ψ(r)|2dr/LxLy

[|ψ|2 = |ψ|2−] is calculated by evolving eq. (1) without
(with) the contribution of the Wiener noise. These two
curves are plotted in the inset of fig. 2 as dashed black and
solid blue curves, respectively. Contrary to the mean-field
case where |ψMF| = 0 in the disordered phase P < PMF,
within the stochastic framework the density field is always
non-zero, independently of the value of the pump P (see
footnote 1).
In contrast to the clear threshold shown by the MF

curve, the smooth increase of the density with pump
strength shown by the stochastic theory requires a more
involved determination of the critical point. As done
in previous works [19] —and discussed in subsequent
sections— our procedure to precisely determine the critical
point involves the functional form of the decay of corre-
lation functions, the behaviour of vortices in the vicinity

1In the disordered phase, fluctuations are responsible for building
up a small but not negligible density of incoherent polaritons, the
only zero-density point coinciding with a vanishing pump strength
P = 0. In the quasi-ordered phase the density grows considerably
and asymptotically approaches the mean-field prediction.
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of the criticality and the appearance of the diffusive Gold-
stone mode in the spectrum. Interestingly, we note in
fig. 2 that fluctuations are responsible for an upward shift
of the critical point PBKT (vertical blue line) with respect
to the MF value PMF (vertical gray line). In order to
unravel the dependence of PBKT on the physical param-
eters ns and Ω, this figure shows the phase diagram for
three different choices of parameters, listed in the caption
of the figure. For each analysed case, the critical point is
highlighted with a vertical coloured thick line. As general
trends, we find that stronger fluctuations in higher modes
(Ω → ∞) and smaller saturation densities (ns → 0) lead to
a larger shift of PBKT with respect to the mean-field PMF.

This feature can be understood by fixing one of the two
parameters and focusing on the other. On the one hand,
for a frequency-independent pump (Ω = ∞, green and
violet lines), we note that increasing ns makes the BKT
threshold PBKT to shift closer to PMF: the slope of the
total density increases with ns, so the critical density is
reached at lower values of the pump strength. On the
other hand, for a fixed value of ns = 500μm−2 (blue and
violet curves), the presence of a frequency-selective pump
leads to an effective thermal population of less field modes.
As a consequence, a weaker pump is sufficient to concen-
trate a macroscopic population in the lowest modes, which
has the effect of shifting the threshold point back towards
the mean-field value PMF.

As expected in a BKT-like picture, the IP phase tran-
sition can be pictorially understood as being mediated by
the unbinding of vortex-antivortex pairs into a plasma of
free vortices [18,19]. In fig. 2 the NESS average number of
topological defects 〈Nv〉 is plotted as a thick red line for
the parameters of the IPΩ=50 case. Details on the proce-
dure we adopt to extract Nv are reported in the SM as
well as the illustrations of three exemplary configurations
of vortices across the BKT phase diagram. The low-pump
disordered phase is characterized by a large number of free
vortices which are free to proliferate. As the pump power
is increased and approaches the threshold point, the num-
ber of vortices 〈Nv〉 ∝ ξ−1/2 starts to decay as expected
for a continuum PT with diverging correlation length ξ,
a detailed study of which is presented in ref. [32]. At the
critical point, around which the process of vortices pair-
ing starts to take place, the average number of vortices
is still non-zero but these are mostly grouped in vortex-
antivortex pairs. Due to vortex binding and annihilation
processes, 〈Nv(P )〉 shows a severe drop right above the
critical point and rapidly decreases to zero. Deep in the
quasi-condensed phase when P � PBKT, as the stochastic
density grows and onset of coherence appears, the dynam-
ical annihilation processes are severe and eventually leave
the system free of defects.

Spatial-temporal coherence and the critical re-
gion. – In this section we investigate the long-distance,
late-time decay of the spatial and temporal first-order
correlation functions, g(1)(Δr) and g(1)(Δt), respectively.

Fig. 3: Crossover from exponential to algebraic decay of the
spatial (a) and temporal (b) correlation functions, defined as
in eqs. (5) and (6). Thick dashed red (blue) curves correspond
to exponential (power-law) fitting, from which the values of the
correlation length ξ and of the power-law exponents αs and αt

plotted in fig. 4 were extracted. For each curve, we superimpose
only the best fitting option. Both fits are only shown for the
curves which lie in the critical region. The fits are restricted
to the chosen fitting window, indicated by the gray shadow.

We focus here on the results for the IPΩ=50 case; the com-
plementary study for the IPns=1500

Ω=∞ case with a frequency-
independent pump is illustrated in the SM. Within
our semi-classical model, the spatial and temporal two-
point first-order correlation functions are defined, respec-
tively, as

g(1)(Δr) =
〈ψ∗(r0 +Δr, t)ψ(r0, t)〉√

〈|ψ(r0 +Δr, t)|2〉〈|ψ(r0, t)|2〉
, (5)

g(1)(Δt) =
〈ψ∗(rc, t0)ψ(rc, t0 +Δt)〉√

〈|ψ(rc, t0)|2〉〈|ψ(rc, t0 +Δt)|2〉
, (6)

and are calculated at a sufficiently late time t = tSS
at which the system has reached its NESS, and with
rc = (Lx/2, Ly/2) being the central point of the spatial
grid. The numerical results for the spatial and temporal
correlations are illustrated in panels (a) and (b) of fig. 3,
respectively.
Inspired by earlier works [19,33], we characterize the

behaviour of the steady-state correlation functions as
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a function of the pump strength P . In fig. 3 we
show the transition from an exponential decay g(1) ∼
e−r/ξ in the disordered phase, to a power-law decay g(1) ∼
r−α in the quasi-ordered phase, as expected for the spa-
tial correlation function of an equilibrium BKT transition.
The same behaviour is found for the temporal correlation
function2. In order to identify whether a given correlation
function is characterised by either exponential or algebraic
decay, we have fitted each curve with both functions, pay-
ing particular attention to ensure that all computational
results are correctly converged within the spatial and tem-
poral windows selected for the fitting procedure (see the
SM). We have then calculated the root-mean-square devia-
tion (RMSD) of the residuals of the fits within the fitting
window selected and we have selected the fit that mini-
mizes the RMSD (see the SM). In fig. 3 we superimpose
on top of each correlation function g(1) the most accurate
fitting curve, represented by red or blue dashed lines in
the exponential or power-law cases, respectively.
Figure 4(a) shows how we characterise the critical region

by means of the RMSD ratios of the fits of the spatial (red
solid curve) and temporal (dashed blue curve) correlators,
namely

σs =
RMSDpow

s

RMSDexp
s

, σt =
RMSDpow

t

RMSDexp
t

. (7)

By visually comparing the residuals of the exponential
and power-law fits on this figure, one can infer the po-
sition of the critical point as the point where the two
curves go through 1. This point indicates the exponential–
to–power-law transition, which takes place for the same
PBKT ∼ 1.0325 (vertical red solid line in fig. 4) for both
spatial and temporal correlation functions3.

This analysis of the decay of the correlation functions
allows us to extract quantities which are strictly linked
to the physical nature of the PT. Namely, the correlation
length ξ, extracted from the exponential fit in the disor-
dered phase, and the algebraic exponents αs, αt which
quantify the algebraic decay of space and time correlators
in the quasi-ordered one. In equilibrium systems, the for-
mer is known to be related to the superfluid density [4].
These quantities are plotted in fig. 4(c), as a function of the
pump strength P and represented as solid green (ξ(P )),
solid red (αs(P )) and blue thick (αt(P )) curves. Mark-
ers in fig. 4 are coloured in a way to match the ones of
fig. 3. In the disordered phase (left part of fig. 4(c)) the

2Note that in our simulations the accessible time duration are
not long enough to observe the finite-size–induced Schawlow-Townes
decay [26,34].

3In both fig. 3 and fig. 4(a), there exists an intermediate regime
in an interval of PBKT, where the curves are exactly fitted neither by
a power-law nor by an exponential form. Therefore, we refer to the
critical region as the portion of the phase diagram located between
the last correlator showing “clear” exponential decay (lower bound)
and the first exhibiting “clear” power-law decay (upper bound). In
our case, these lower and upper bounds are located at P = 1.032 and
P = 1.0338, respectively. In both figs. 2 and 4, the critical region is
highlighted with a blue shading.

Fig. 4: (a) For the IPΩ=50 case, plot of the quantities σs (solid
red curve) and σt (dashed blue line) defined in eqs. (7), which
identify the critical region (shaded blue region) and the critical
point PBKT (vertical red line). Squares, diamonds and circles
correspond to points which fall before, within and above the
critical region, respectively. (b) Log-linear plot of the spatial
(αs, filled circles) and temporal (αt, empty circles) exponents,
extracted from the power-laws fits of fig. 3 with error bars.
(c) The correlation length ξ (green solid curve) diverges when
approaching PBKT from the disordered phase. Away from the
critical point into the quasi-ordered phase, the decay of the spa-
tial (temporal) algebraic exponent αs (αt) is shown as empty
(filled) circles and red (blue) solid line. The excitations spec-
trum for three characteristic values of the pump strength indi-
cated with (i), (ii) and (iii) is shown in fig. 5. The inset shows
a plot of ξ and αs for the IPΩ=50 and IPns=1500

Ω=∞ cases. In all
panels above, the colour of the markers corresponds to the one
of the different curves in fig. 3.

coherence length ξ(P ) diverges when approaching the crit-
ical region from the left, as expected for a continuum PT
(in finite systems) undergoing critical slowing down4. In
the quasi-ordered phase (right part of fig. 4(b), (c)), the
exponents αs and αt show a decreasing behaviour as the
control parameter P is increased, which is connected to
the expected onset of coherence.

In fig. 5 we plot three exemplary cases of excitation
spectrum calculated from the spatio-temporal Fourier
Transform (FT) of |ψ(r, t)|2 across the PT. As expected,
the system moves from a free-particle quadratic disper-
sion below the transition (fig. 5(i)) to a non-equilibrium

4While the dataset extracted is suitable for a qualitative descrip-
tion of the PT, a possible quantitative extraction of critical expo-
nents would require a more advanced scaling analysis with larger
sample sizes.
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Fig. 5: Panels (i)–(iii) show colorplots of the spectra obtained numerically from the Fourier transform of |ψ(r, t)|2, for the three
points (i) P = 1.03, (ii) P = 1.0338 and (iii) P = 1.06 highlighted in fig. 4. Panel (iv) shows a comparison with the real part
of the analytical dispersion in (3) (blue curves) for case (iii). The inset shows a different numerical simulation with a (100×)
larger box and spatial discretization, able to capture the low-k region and the diffusive branch of the spectrum.

spectrum, as in (3), above the transition (fig. 5(iii), (iv)).
We find the analytical Bogoliubov dispersion (3) to cor-
rectly describe our numerics: the agreement between the
peak of the numerical spectrum (colour map) and the an-
alytical prediction (blue curves) is explicitly illustrated for
the last case in fig. 5(iv). For this case, we find that the
critical momentum kc(P = 1.06) = 1.26 × 10−2 μm−1 is
on the order of the momentum discretization Δk = π/L =
1.06× 10−2 μm−1 of the numerical simulation; as a conse-
quence, in the main panels the diffusive branch is hidden
by the sonic behaviour of the dispersion at k > kc. The
numerical value knumc = 1.0(5) × 10−2 μm−1 is extracted
by simulating a system with a (100×) smaller Δk (see the
SM): the low-k part of the spectrum, plotted as an inset
of fig. 5(iv), is now visible and in good agreement with the
analytically predicted curve.

Discussion on the nature of the phase transition.
– Previous experimental [20] and theoretical [19] works
showed that a spatial power-law exponent exceeding the
αs = 0.25 upper bound of the equilibrium theory is a sig-
nature of the non-equilibrium nature of the PT. While this
is evidently the case for the IPns=1500

Ω=∞ simulations, the nu-
merically obtained value of the exponent in the IPΩ=50

case never exceeds the equilibrium upper bound. How-
ever, by enlarging the system size we find that g(1)(Δr) is
converged in space over all the quasi-ordered pump range
except for the extreme point P = 1.0338. This is ex-
pected, as in the very vicinity of criticality finite size
effects can be most important. As shown in the SM, by
enlarging the box by 1.5 and 2 times, power-law exponents
are found to lie within the interval 0.25 < αs < 0.35 (re-
ported in fig. 4(b), (c) as a large errorbar for the brown
point αs(P = 1.0338)). This confirms the argument that
for a non-equilibrium driven-dissipative system αs can ex-
ceed the upper equilibrium limit of α = 0.25 in the critical
region, for both frequency-independent and frequency-
dependent pumping.

A key difference between equilibrium and non-
equilibrium PTs is encoded in the relation between the
αs and αt exponents. In the equilibrium case, the sonic
nature of the dispersion leads to αs = αt. For a

non-equilibrium driven-dissipative condensate, the diffu-
sive nature of the Goldstone mode suggests instead that
αs ∼ 2αt [17]. At first sight, the prominent sonic branch
visible in the spectrum of fig. 5(iii) could suggest that
we are in a similar equilibrium-like scenario as in ref. [11],
where almost equal values were measured for αs and αt, in
strong contrast to our numerics. Looking at the excitation
spectrum in refs. [9,11] reveals that the critical momentum
kc(P = 1.06) is there 2.53×102 times smaller than the one
considered here, giving a characteristic length 2π/kc that
largely exceeds the system size. This is due to the much
longer lifetime displayed by polaritons in those experi-
ments and is responsible for the absence of an observable
diffusive region in the Goldstone mode. Our numerical
study shows instead a power-law decay of both spatial
and temporal correlation function, with an exponent ratio
αs ∼ 2αt (fig. 4(b)), suggesting a non-equilibrium nature
of the condensate. However, due to the inability to numer-
ically simulate a large enough box to clearly highlight the
diffusive Goldstone mode, we cannot determine whether
the different values measured for αs and αt are due to its
non-equilibrium nature or finite-size effects, or an inter-
play between the two.

Conclusions. – In this paper we have undertaken
a detailed numerical analysis to investigate the non-
equilibrium phase transition displayed by a polariton sys-
tem under incoherent pumping. We have characterized
the non-equilibrium phase diagram within both mean-field
and stochastic pictures, confirming for realistic system
sizes a BKT-like scenario for non-equilibrium condensates
featuring a crossover between binding/unbinding of vor-
tices and between an exponential/power-law decay of cor-
relations. Particular attention was given to the role of
fluctuations in the shift of the critical point with respect
to the mean-field picture and to the long-distance and
late-time decay of the spatial and temporal correlation
functions. Our findings show that the non-equilibrium
driven-dissipative phase transition exhibits an algebraic
exponent exceeding the upper-bound equilibrium limit of
1/4 in agreement with previous experimental [20] and
theoretical [19] works. A non-equilibrium nature of the
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condensate is also suggested by the ratio αs/αt ∼ 2 of the
algebraic decay exponents of space and time correlators,
extracted by our numerical simulations and suggested by
analytical calculations within a Keldysh framework [17].
We note however that such an effect could be also due
to a possible interplay with finite-size effects. It would
be of great interest to explore the interplay between non-
equilibrium and finite-size effects in spatial correlations in
future works. Our results suggest that a complete char-
acterization of the non-equilibrium Berezinskii-Kosterlitz-
Thouless phase transition is within current experimental
reach using polariton fluids.
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