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Single-particle localization of an ultracold atom is studied in one dimension when the atom is confined by
an optical lattice and by the incommensurate potential of a high-finesse optical cavity. In the strong-coupling
regime the atom is a dynamical refractive medium, the cavity resonance depends on the atomic position within
the standing-wave mode, and nonlinearly determines the depth and form of the incommensurate potential. We
show that the particular form of the quasirandom cavity potential leads to the appearance of mobility edges, even
in presence of nearest-neighbor hopping. We provide a detailed characterization of the system as a function of its
parameters and, in particular, of the strength of the atom-cavity coupling, which controls the functional form of
the cavity potential. For strong atom-photon coupling the properties of the mobility edges significantly depend
on the ratio between the periodicities of the confining optical lattice and of the cavity field.

DOLI: 10.1103/PhysRevA.98.053633

I. INTRODUCTION

The Aubry-André model [1] describes a quantum particle
tightly confined by a one-dimensional lattice, and in the
presence of a second periodic potential, a harmonic function
whose period is incommensurate with the main lattice period.
In such a system, when the second potential exceeds some
critical height all states are exponentially localized, very likely
as in the case of Anderson localization in truly disordered
systems [2]. The fact that localization indeed manifests in the
Aubry-André model has been formally proven in Ref. [3]. Due
to its spatial correlations, the Aubry-André potential and its
extensions are often referred to as quasi-disordered potentials.

Detailed studies of disorder-induced effects are presently
possible, since ultracold atomic systems allow an unprece-
dented level of controllability over the system parameters
[4-6]. This is particularly true for optical lattice potentials
where different lattice geometries can be realized [7], as on-
site potentials as well as tunnelings can be tailored. Moreover,
artificial gauge fields can be simulated, often adapting peri-
odic modulations of lattice parameters or interactions [8—17].
Of particular value is the control over the interaction strength
by means of Feshbach resonances [18].

Early propositions to study disorder-induced effects in
cold atom settings [19,20] soon resulted in experimental
attempts to observe direct signatures of localization in in-
teracting condensates [21-25]. Only when interactions were
turned off could localization be directly observed in ultracold
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atomic gases placed in speckle [26] or quasirandom [27]
potentials in quasi-one-dimensional (1D) systems. The latter
case is precisely the case of Aubry-André localization [1].
Soon afterwards further progress was made, leading to the
demonstration of three-dimensional (3D) Anderson localiza-
tion [28,29]. With the development of many-body localization
theory [30,31] it became clear that a sufficiently strong disor-
der leads also to localization for interacting particles, breaking
the common wisdom of ergodicity in such systems [32].
Research on many-body localization has rapidly advanced in
recent years (see, e.g., reviews [33,34]), followed by exciting
experimental developments [35,36]. While early theoretical
work considers spin systems (reducing in some cases to
spinless fermions), many-body localization is predicted to
occur also for bosons [37—39]. Let us also note that Anderson
localization is predicted to occur for solitons, namely, even for
weak disorder and in the presence of interactions [40].
Notwithstanding the rising interest in localization in inter-
acting systems, the noninteracting limit is still at the center
of intensive studies on the critical dynamics close to the
localization transition [41,42]. Moreover, the position of the
mobility edge for 3D Anderson localization is a subject of
current debate [43,44]. Anderson localization is studied in a
variety of systems, and recent propositions suggest that the
phenomenon can occur in the time domain [45,46] and it
can be understood in terms of time crystals [47—49] (for a
review see [50]). The one-dimensional case presents peculiar
features. Here, even a tiny truly random disorder leads to
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localization of all eigenstates. On the contrary, Aubry-André
localization in quasiperiodic potentials occurs at a threshold
value. This behavior is modified when hopping in the main
lattice has tails beyond nearest-neighbor coupling [51,52]. In
this modified Aubry-André model one may observe (as in
the standard 3D case) mobility edges, i.e., situations where,
for a given disorder, the energy eigenstates within a band
can be delocalized or localized and are separated in energy
by a “mobility edge” [53]. Similarly, nontrivial correlations
in disorder or nondiagonal disorder (e.g., random tunnelings)
lead to an appearance of mobility edges [54—64].

In this work we show that mobility edges with peculiar
features can appear in a different extension of the Aubry-
André model, where the hopping is nearest neighbor and
uniform while the incommensurate potential, in turn, is not a
simple harmonic function but instead can possess all higher
harmonics. This model is an idealization of the dynamics
of atoms which are confined by optical lattice potentials
and interacts with a standing-wave mode of a high-finesse
optical resonator when the system is pumped by a laser which
either couples directly to the cavity or pumps the atoms
transversally. Here, the strong optomechanical coupling with
the atoms gives rise to a shift of the cavity resonance which
depends on the atomic density within the cavity standing
wave, and thus to a nonlinear dependence of the intracavity
potential on the atomic density [65-68]. When the atoms are
transversally pumped by the laser and the periodicity of the
cavity mode and optical lattice are commensurate, interacting
atoms can form density-wave phases [69—72]. Similarly, the
incommensurate ratio of these frequencies may lead to a
quasirandom potential, giving rise to disordered phases in
interacting systems [73,74]. The ground state of a single cold
atom for incommensurate ratios was analyzed in Ref. [75]. It
was shown that the specific incommensurate potential of the
cavity field—compare Eq. (6) below—Ieads to Anderson-like
localization of the ground state. This localization is due to the
incommensurate potential which emerges because of cavity
backaction and is thus self-induced by the atom. It has been
argued that the dynamics of atomic wave packets in a related
model can exhibit anomalous diffusion [76]. In this work
we significantly extend the previous study of Ref. [75] by
analyzing the properties of excited states in the configuration
originally proposed in [75]. We show that this model can
exhibit a mobility edge. The appearance of a mobility edge
depends on the strength of the coupling between the atom and
the cavity mode, and results thus from the nonlinear character
of the optomechanical potential. Interestingly, the system’s
behavior exhibits a dramatic dependence on the incommensu-
rability parameter and it is thus sensitive to the quasirandom
disorder of the self-induced cavity potential. The paper is
structured as follows. In Sec. II we present the model used
and we sketch its derivation. In Sec. III we show and discuss
the results of the numerical calculations. The conclusions are
drawn in Sec. IV.

II. MODEL

In this section we introduce and justify the model which
is the starting point of our investigation. The material here
presented summarizes the detailed derivations reported in
Refs. [67,74,75].

A. Optomechanical coupling between atomic motion and cavity

The system we consider is an atom of mass m whose
motion is constrained along one dimension, which we identify
here with the x axis. The atomic motion is tightly bound by
an optical lattice and confined inside a high-finesse optical
resonator, which in turn is driven by a laser. An atomic dipolar
transition strongly couples to one standing-wave mode of the
resonator which dissipates photons at rate . We consider the
limit in which the coupling is purely optomechanical, namely,
the atomic internal degrees of freedom can be described by
the dispersive polarizability, and cavity and atomic motion are
directly coupled to one another. The Hamiltonian part of the
dynamics takes the form

2

Hopo = 2”— + Wy cos?(2x Jag) — hiAcala
m

+ihn(a' —a) + nUpa'acos@mx/r), (1)

where p and x are the canonically conjugated momentum and
position of the atom, Wy and A are the depth and wavelength
of the optical lattice, respectively, and a and a' are the anni-
hilation and creation operator of a cavity photon at frequency
o, and wavelength A. The parameter 1 denotes the strength
of the pumping laser at frequency ), and the Hamiltonian is
reported in the reference frame rotating at the pump frequency,
with A. = w, — o, the detuning between pump and cavity
frequency. Finally, the optomechanical coupling between the
cavity and atomic motion gives rise to an optical lattice at
periodicity A and depth Uya'a. In turn, this term also describes
a shift of the cavity frequency which depends on the atomic
position, Uy cos(2wx/A). Therefore, this term gives rise to
a nonlinear coupling between atomic motion and resonator,
which is scaled by the parameter Uy. In particular, U, can be
either positive or negative, depending on the sign of the atomic
detuning [68].

The incoherent part of the dynamics is solely given by
cavity losses and is described by a Born-Markov master
equation for the density matrix p of the cavity and atom’s
external degrees of freedom. The full master equation reads

1
8tl0 = ._[Hoptoa P] + £p ’ ()
ih
where the dissipator £ describes the cavity losses:
Lo =«Qapa’ —alap — pa'a). 3)

Losses due to spontaneous emission are here neglected, since
the fields are far off resonance from the optical dipole tran-
sition so that the atom-light interactions are in the dispersive
regime.

In the rest of this work we will focus on the atomic motion.
This is confined by two potentials: the external optical lattice,
at fixed depth, and the cavity standing-wave potential, whose
depth is proportional to the number of intracavity photons
and is thus a dynamical variable. We focus on the dynamics
when the ratio 8 between the two periodicity, 8 = Ap/A, is
incommensurate. This situation would reproduce the Aubry-
André model, but with an important difference due to the
optomechanical coupling, which gives rise to an effective
nonlinearity in the dynamics of the atomic motion for suf-
ficiently large values of Uy. The parameter Uy, indeed, is
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related to the dispersive cooperativity Cy of cavity quantum
electrodynamics [77] by the relation Cy = |Up|/k. In the
regime where Cy > 1, the backaction of the cavity field on
the atomic motion thus appears in terms of a potential which
contains higher harmonics than the one at wave number k =
25 /A. This becomes evident in the limit in which the cavity
degrees of freedom can be eliminated from the equations of
motion of the atom, which is the regime on which we focus in
the rest of this paper.

B. Eliminating the cavity degrees of freedom

We now consider the regime in which the characteristic
timescale 7. of the cavity degrees of freedom is orders of
magnitude smaller than the characteristic timescale T}, of the
atomic motion. In this regime 7. ~ |[A, + ik|~' and Ty ~
g Exin, Where wg = 22 /(mA?) is the recoil energy and
Eyin is the average atom’s kinetic energy. For /k? + AZ >
Jwg Eyi, we can perform a coarse graining over time At, such
that 7, < At <K Ty. Moreover, for sufficiently large ratios
Ty /7. the cavity shot noise can be neglected and the field
variable can be replaced by its average value over Az, which
is now a function of the atomic variable:

a— a~n/[(A. — Uycos®(kx)) + ix].

Details of this procedure can be found in Refs. [65,67,73] (see
Ref. [78] for the semiclassical approximation). In this limit the
dynamics is described by the effective Hamiltonian:

2
Her = 2 4 Wy cos>(mx) + £(x). @)
2m
where we have now reported the position x in units of Aq/2.
The term e(x) is the nonlinear potential due to cavity backac-
tion, which reads [75]

(x) = Vparctan(—8 + C cos*(Bmx)),

with Vo = An?/k a proportionality factor whose strength is
controlled by the pump intensity, § = A./k, C = Up/k (such
that Co = |C|), and B some irrational number. In the first
part of this paper we set it equal to the golden ratio ¢ =
(14 +/5)/2.

The parameter C, which we will denote from now on by
“cooperativity,” can be both negative and positive, depending
on the sign of Uy and thus of the detuning between fields and
atomic transition. This is important for the following discus-
sion, since when C > 0 the minima of the cavity potential are
at the nodes of the cavity standing wave, and thus where the
intracavity intensity vanishes. For C < 0, instead, the minima
are the maxima of the intracavity intensity.

Finally, for sufficiently deep optical lattices we use the
tight-binding and single-band approximation, and obtain a
modified Harper’s Hamiltonian,

Hrg = —t Y [In)(n + 1+ |n)(n — 1] + &xln) (n]],  (5)

where |n) is the state vector for the particle localized on the
nth site of the lattice, ¢ is hopping integral, and ¢, scales the

on-site energy:
&, = Varctan(—8 + C cos*(Bmn)), (6)

with V = V,,/1 the potential depth in units of the tunneling ¢.
The Hamiltonian (5) has been obtained in the basis of Wannier
functions, which are localized on the optical lattice sites, and
discarding long-range hopping as well as inhomogeneities in
the tunneling coefficients caused by cavity potential €(x). We
remark that, despite that the initial model is driven dissipative,
in the regime where we can adiabatic eliminate the cavity de-
grees of freedom the atomic dynamics is strictly Hamiltonian,
and thus different from the model considered in Ref. [76].
The Hamiltonian description of Eq. (4) is valid as long as the
coarse-graining discussed above and in Refs. [65,67,73,78]
applies.

In the rest of this work we will analyze the spectrum of
excitations of the Hamiltonian Htg as a function of V, C,
and 8. These parameters have specific physical meanings.
The dimensionless potential depth V is proportional to the
intensity of the pump, and thus to the average number of
intracavity photons. The parameters § and |C| determine the
form of the cavity-induced potential. The cooperativity C
determines the strength of the cavity-atom optomechanical
coupling. For |C| « 1 the on-site energy essentially reduces
to a single harmonic, however with the new amplitude V' =
|ClV/ [2(8% + 1)] and the shift —atan(8). The critical value
at which localization occurs is found at V' = 2f/«a, with @ a
factor depending on the overlap integral between the Wannier
functions and the incommensurate potential in the harmonic
limit [75]. When |C| > 1, instead, higher harmonics become
relevant: the value of |C| and its sign determine the form of
the nonlinear potential that the atom experiences.

We finally remark that the model of Eq. (4) is strictly
valid when only one atom interacts with the cavity field.
Thus, it cannot be extended to a Bose-Einstein condensate of
atoms with vanishing scattering length, since the atoms will
still experience the cavity-mediated long-range interactions
[65,67]. Therefore, in this work Cy = |C] is, strictly speaking,
the single-atom cooperativity [77]. Experiments confining
a controllable number of atoms within high-finesse optical
resonators using a dipole trap have been recently performed,
see, for instance, Refs. [79-81].

III. EXCITATION SPECTRUM AND MOBILITY EDGES

The ground-state properties of the system described by the
Hamiltonian (5) have been analyzed in detail in Ref. [75].
Due to the fact that the potential contains higher harmonics,
the model is not dual. Nevertheless, the ground state exhibits
a transition between extended and localized wave function,
whose transition point is shifted with respect to the transition
without cavity backaction. In particular, for sufficiently large
values of |C|, in the localized phase the ground-state proba-
bility density can exhibit a very small, yet finite, contribution
from a constant density offset, while the Lyapunov exponent
of the exponentially localized component is a function of the
cooperativity.

In this section we analyze the properties of the excited
states, focusing in particular on identifying a nontrivial mo-
bility edge, namely, an energy eigenstate separating localized
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FIG. 1. Eigenenergies (in units of ¢) as a function of the dimen-
sionless potential depth V = V;/t for B = ¢, C = =2, and § = 0.
The dots correspond to the energy values, the color (shade of gray
in print) represents their IPR as visualized by the bar code. The
horizontal black lines indicate the bandwidth for V = 0. The gray
vertical lines indicate the parameters used in Fig. 5.

and nonlocalized states within a band [82]. To this end we
diagonalize the Hamiltonian (5), taking an optical lattice with
N = 1000 sites and open boundary conditions. Using the
eigenstates ¥;(n), where v;(n) is the value of the j eigenstate
at the lattice site n, we determine the inverse participation ratio
IPR (see, e.g., [83,84]):

-1
IPR; = (Zw,-(n)r‘) : )

From construction IPR = 1 for perfect localization, namely,
when only one site is occupied. This is the minimal value
it can take. The maximal value IPR = N corresponds to the
case of a uniform distribution over the whole lattice. The
chosen system size N = 1000 is sufficiently large to clearly
distinguish between extended states, whose IPR is of order of
several hundreds, and localized states. We checked that states
with IPR values about 10-20 are exponentially localized. Our
calculations show that nearly all eigenstates have IPR which
falls into one of these ranges of values. An example of the
energy spectrum as a function of V is shown in Fig. 1 for
C = —2 and § = 0. The dots correspond to the energy values,
and the color (shade of gray) represents their IPR. One can
observe the abrupt change of the IPR from large to low values
(where IPR ~ 10). Moreover, the states of a whole subband
become localized or extended nearly for the same value of V.

The presence of mobility edges can be visualized by intro-
ducing the new parameter R, which is the ratio between the
number of localized states (here, states with IPR < 50) over
N and is defined as

_ #(IPR < 50)
n N

where the threshold IPR = 50 has been identified for a lattice
of N = 1000 sites. The ratio R can take all values between
0 and 1, where R = 0 corresponds to the situation in which
all states are extended while for R = 1 all states are localized.
Thus an abrupt transition between the extreme values of R
indicates the localization transition for all the states. Instead,

, ®)
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FIG. 2. Contour plot of the ratio of localized states R, Eq. (8),
as a function of the dimensionless potential depth V and of the
cooperativity C for 8 =¢ = (1 + «/5)/2 and offsets (a) 6 = 0 and
(b) 6 = —2 [see Eq. (6)].

a gradual change of R points towards the existence of the
mobility edge, where for given parameter values only part of
the eigenstates is localized.

Figure 2 displays R as a function of the on-site disorder
parameters V and C for § = {0, —2} in Eq. (6). For very small
|C|, as expected, all states are extended with vanishing R, at
least at the range of V considered. For stronger cooperativity
C, the localization sets in, but the border between the R = 0
and R = 1 regime is smeared out over a significant range of V
values. In the region corresponding to intermediate R values
only a fraction of states reveals localization. Thus, some of the
eigenstates of the system for say, C &~ 4, V & 8 are localized
while others are extended. Since localized and delocalized
states cannot coexist at similar energies, this behavior indi-
cates the existence of the mobility edge in energies.

A further insight may be gained in comparing Fig. 2(a)
with Fig. 2(b) of Ref. [75]. In the latter the participation ratio,
i.e., the inverse of (7), is plotted (accidentally, it is called there
an inverse participation ratio, in obvious contradiction with
the IPR definition [83,84]) for the ground state of the system.
As expected, the localization border for the ground state is
sharp. For positive C it corresponds to the smaller V border
of the transition region in Fig. 2(a). Thus for parameters in
this region (e.g., C & 4, V &~ 8), the ground state is already
localized while some excited states are still extended. This
proves the existence of the mobility edge in the system,
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separating the low-lying localized states from the higher-lying
extended states in this transition regime.

In this way we can convince ourselves about the existence
of a single mobility edge. It may be possible that there exists
also an upper mobility edge not revealed by comparison
with the ground-state properties. Its detection would require a
detailed study of R as a function of the energy, which is
beyond the scope of the present paper. Let us note, however,
that the mobility edge becomes “inverted” for negative C.
Here, in the parameter regime where R already takes inter-
mediate values, the ground state may remain extended (as
visible by comparing Fig. 2(a) with Fig. 2(b) of Ref. [75]),
thus suggesting localization of some excited states.

For § = —2 [Fig. 2(b)], we observe the similar behavior as
for § = 0 with a large transition region but only for positive C
values. For C < 0 the interval of V values where the mobility
edge is found shrinks at C ~ —4. We note that for the same
parameters this is the region where bistability is expected
for interacting atoms in the same setup [85]. In general, the
variation of R with V occurs in steps. This is a consequence
of the fact that the energy band splits into flat subbands by
increasing V from zero, as visible in Fig. 1.

So far we discussed the mobility edge for an incommensu-
rability ratio equal to the golden mean, 8 = ¢ = (v/5 + 1)/2,
which is traditionally used in most of the studies in the field.
The proof of the localization in the Aubry-André model given
in Ref. [3] is derived for any diophantic number—the number
“as much incommensurate” as a golden ratio—having the
same expansion into a continuous fraction from some point.
We will now verify whether any diophantic number gives the
same results for the potential we are considering, Eq. (6). For
this purpose we use the formula

w a+bd
¢cd = >
c+do

which delivers a whole (infinite, countable) family of dio-
phantic numbers when a, b, ¢, and d are integers fulfilling the
relation ad — be = £1, and ¢ = (1 ++/5)/2 is the golden
ratio [86]. We construct a set of diophantic numbers 4);‘5 in
the following way. We take £ € {2, ..., 15}. For each £ we
find the set of all divisors of £, D = Dy, ..., and of £ — 1,
D' =Dj,.... Then we construct the subsequent ¢“,’s by
takinga = D;, b = D}, c={— 1)/D}, and d = ¢/D;, and
by eliminating reappearing configurations. This yields a set of
M = 122 diophantic numbers ¢,. We then evaluate R(8) for
each value of 8 = ¢ffj from this set and determine the average
(R) g, and its standard deviation o (R)g), defined as

©)

1
(R = 27 D R, (10)
B

a(R)ip =/ (R?) = (R). (1)

The mean (R) g, is shown in the top panels of Figs. 3 and 4 as
a function of V and C for two different § values. A comparison
of the mean plots with Fig. 2 shows that the parameter
regions corresponding to all the states being extended or being
localized is not sensitive to changes of the incommensurate
ratio. (Note that the horizontal scale is smaller in Figs. 3 and 4

1.0
4
0.8
24
0.6 —
C 0 6;:
0.4~
—24
0.2
0.0

15 20 25 30

FIG. 3. Contour plots of (a) the average ratio of localized states
(R), Eq. (10), and (b) the standard deviation o (R) of the distribution,
Eq. (11), as a function of C and V for offset § = 0 in the potential of
Eq. (6). The average is taken over 122 different values of diophantic

numbers B = ¢ (see text for details).

than in Fig. 2 for better visibility of the details of the transition
region.) On the other hand, the contours of the intermediate
regime, where the mobility edge appears, are smoothened.
This indicates that the position of the mobility edge depends
on the specific incommensurability ratio. To our knowledge,
this feature has not been reported in other extensions of the
Aubry-André model before.

To see whether this effect is really important, let us con-
sider the standard deviation o (R);gy of R distribution shown
in the lower panels in Figs. 3 and 4. Clearly, deep in the
localized regime (where R &~ 1) and in the extended regime
(where R = () also the standard deviation takes very small
values. By comparison, o (R)g) is significant in the transition
regime between extended and localized states. Thus, indeed,
in this regime the behavior of the system is sensitive to the
incommensurability ratio.

Let us mention, finally, that the existence of controlled mo-
bility edges could be utilized for a transportlike experiment, in
the spirit of the proposal in Ref. [59] where Anderson local-
ization in a spatially correlated disorder potential is shown to
operate as a bandpass filter, which selects atoms with certain
momenta. In order to show these dynamics in our system, we
simulate the time evolution in our model assuming that the
atom initially occupies a single site at the center of the system.
We assume a quasiperiodic lattice of 100 sites, surrounded
by two “empty” regions on both sides, both consisting of
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FIG. 4. Same as Fig. 3 but for the offset parameter § = —2 in the
potential of Eq. (6).

500 sites. The size of the central region is chosen to exceed
the localization length. The numerical evolution is calculated
using a fourth-order Adams predictor-corrector method up to
time 7 = 400/¢. This time duration is sufficiently long to
allow for the extended component of the initial wave function
to leave the central region. In order to obtain the distribution
of momenta v (k) of waves that managed to escape from the

0.008 1
0.006
= 0.004
5
0.002
0.0001
3 2 -1 0 1 2 3
k

FIG. 5. Distribution |y (k)|> of momenta of waves, leaving the
central quasidisordered region of the system, as a function of k.
The distribution is evaluated numerically after evolving an initially
localized wave function for a time 7 = 400/¢. The parameters are
8 =0, C = -2, while V =2 and V = 3 for black and green lines,
respectively. The atom is initially at the center of the quasidisordered
potential. See text for further details.

central region, we set to zero the part of the wave function
localized in the central region and take the Fourier transform
of the remaining part. Figure 5 displays |y (k)|* as a function
of k at time T'. It can be seen that by manipulating the system
parameters one can select waves within a certain window
of momenta, making it possible to use this class of systems
as filters for momenta of particles [59]. We do not have an
analytical description in this case (as is possible for some
classes of disordered potentials [64]). On the other hand, the
advantage of the system presented here lies in the fact that the
disorder is quasirandom and, therefore, may be reproducible.

IV. CONCLUSIONS

Starting from the model proposed in [75], we have given
a description of the localization properties by determining the
full spectrum as a function of the system parameters. We have
shown that there exists a finite range of parameters where a
mobility edge exists—some states are localized while other
remain extended. We have also shown that fully localized
or fully extended states exist in regions of the parameters
space and that these regions are quite robust upon changing
the incommensurability ratio B. Yet, the region where the
mobility edge exists is strongly influenced by the value of 8,
even if this is any other diophantic number than the golden
ratio. In particular, both the position of the mobility edge in
parameter space, as well as the fraction of localized states,
strongly depend on the chosen incommensurability ratio g
as revealed by a significant variance of this fraction when
different incommensurate parameters are taken. Finally, we
have discussed a possible application of the sensitivity on
as a filter for the momenta of ultracold atoms.

We note that the localization properties physically orig-
inate from the backaction of the cavity field on the atom.
The field leaking at the cavity mirrors, moreover, contain
information about the atomic state and dynamical properties;
this property has been successfully applied, for instance,
for measuring Bloch oscillations [87-89]. Future work will
focus on the characterization of coherence properties of the
emitted light in order to identify and monitor the localization
properties.

Note added. After finishing this work we became aware
of a recent preprint [90] discussing mobility edges for other
types of incommensurate lattice potentials.
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