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Information Causality without concatenation
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Information Causality is a physical principle which states that the amount of randomly accessible
data over a classical communication channel cannot exceed its capacity, even if the sender and the
receiver have access to a source of nonlocal correlations. This principle can be used to bound the
nonlocality of quantum mechanics without resorting to its full formalism, with a notable example
of reproducing the Tsirelson’s bound of the Clauser-Horne-Shimony-Holt inequality. Despite being
promising, the latter result found little generalization to other Bell inequalities because of the lim-
itations imposed by the process of concatenation, in which several nonsignaling resources are put
together to produce tighter bounds. In this work, we show that concatenation can be successfully re-
placed by limits on the communication channel capacity. It allows us to re-derive and, in some cases,
significantly improve all the previously known results in a simpler manner and apply the Information
Causality principle to previously unapproachable Bell scenarios.

PACS numbers:

I. INTRODUCTION

Information Causality (IC) is a physical principle pro-
posed to bound nonlocality of correlations without re-
sorting to the full formalism of quantum mechanics [1}
2]. Instead, the bounds are derived only from the ax-
ioms of information theory. In a nutshell, the princi-
ple states that if one party has a single use of a com-
munication channel with a capacity C to send the other
party some information, then the amount of informa-
tion potentially available to the receiver cannot exceed
C even if the parties share some nonlocal resources. In
Ref. [1] it was shown that both classical and quantum
information theories, and every generalization of them
adhering to some of their intuitive properties, obey IC.
At the same time, the principle of IC is strong enough
to partially recover the boundary of the set of quan-
tum nonlocal correlations [3]. Most notably, as shown in
Ref. [1]], IC can be used to re-derive the Tsirelson’s bound
of the Clauser-Horne-Shimony-Holt (CHSH) inequality,
answering the long-standing question of Popescu and
Rorhlich on the reason for its value [4-6]. Moreover,
IC was shown to rule out stronger-than-quantum cor-
relations, which could not be detected by other bipartite
principles, such as Macroscopic Locality [7-H9]. Finally,
the principle of IC is the only known candidate with the
potential to recover the exact boundary of the set of bi-
partite nonlocal quantum correlations [10].

The problem that one faces when deriving bound
on the strength of nonlocal correlations from IC is that
one has to find a suitable communication protocol that
makes use of those correlations. Until now, it was be-
lieved that to obtain the strongest results, one must use
protocols that allow for concatenation, the process of
combining the outcomes of several copies of the nonlo-
cal source in a way that increases the amount of poten-
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tially available information in stronger-than-quantum
theories. This requirement significantly limits the types
of Bell scenarios for which the bounds from IC can be
derived [1, 09, [11].

In this work, we argue that the procedure of concate-
nation is not required and often suboptimal in proofs
utilizing IC. More precisely, we show that by consider-
ing a non-identity communication channel with suitably
chosen capacity and a single copy of a nonlocal resource,
one can: (a) re-derive all the results from Ref. [1} [11];
(b) tighten the bounds found in Ref. [9]; (c) apply IC to
Bell scenarios for which no concatenation procedure is
known. We expect that with the modified construction,
IC is likely to become a staple tool for finding bounds
on Bell nonlocality in situations when traditionally ap-
plied numerical methods are computationally demand-
ing [12].

II. IC AND CONCATENATION

We start by restating the formulation of the IC princi-
ple from Ref. [2]. Consider a communication scenario in
which the sender has N real-valued random variables
ag, ...,an—1 and a single use of a channel with classical
communication capacity C. Then

N-1

Y. I(a;b;) <C, 1)

i=0

where b; is a random variable denoting the receiver’s
guess of the value of g; if the receiver chooses to guess
it, and I(a;; b;) is the Shannon’s mutual information.

In the original formulation of IC, as given by Ref. [1],
the bound on the right-hand side of Eq. (1) is defined as
the size of a message that the sender communicates in
each round. The latter, somewhat vague statement, was
later clarified in authors” subsequent work of Ref. [2]:
“Notice that it does not matter how this information is en-
coded: when we refer to ‘sending the M bit message’, it should



be understood as a single use of a channel with classical com-
munication capacity M.”

In order to apply IC to quantum correlations, in
Ref. [1] the authors start by considering the following
protocol [13]: The parties share a pair of devices char-
acterized by probability distribution P(a, b|x, y) with all
variables a,b, x,y binary, x and a being the input and
output of the sender, and y and b — the input and output
of the receiver (Here and later in the text, by P(a, b|x,y)
we mean all the probabilities P(a = i,b = j|lx = k,y =
1)¥i,jk1). Let N = 2 and P(a,b|x,y) be such that
b = a @ x - y with probability p for bothy € {0,1} (&
denotes the summation modulo 2). The sender chooses
x = ag @ a; and transmits a message m = ag @ a to the
receiver. In order to learn about i-th bit a;, the receiver
chooses y = i and computes b; = m @ b. It is straightfor-
ward to confirm that a; = b; with probability p. If val-
ues of ag and a7 are distributed uniformly, this protocol
yields I(a;b;) = 1 — h(p), where h(.) is the Shannon’s
binary entropy. If m is send over a perfect channel, then
C = 1 since m is just a bit. The bound resulting from
Eq. (1) is 2(1 — h(p)) < 1, which implies p < 0.890. It
is easy to see that the CHSH expression for P(a, b|x,y)
is also equal to p [5]. Hence, we have derived a nontriv-
ial bound on CHSH inequality from IC. However, the
maximum quantum value of p, known as the Tsirelson

bound, is po = (1 4 \%) ~ 0.854 [4], which is signifi-
cantly lower than what we have just derived.

To obtain a tighter bound on pg from IC, the authors
of Ref. [1] propose to increase N, the number of bits
given to the sender at each round, and use concatena-
tion. Concatenation is essentially a process of locally
combining inputs and outputs of many copies of the
same pair of devices. It is, however, different from the
simple “wiring” of devices [14], as in the case of con-
catenation the input of each device of the sender also
depends on the bits a;.

Here, we do not give the explicit description of con-
catenation, and refer the reader to Ref. [1]. Instead,
we only state some details of it as facts. This proce-
dure works for N = 2* for some positive integer k. At
sender’s the devices are placed in layers with k-th layer
having 251 devices. Each of the devices produces a
“message” just like in the protocol above and the result-
ing 2K—1 “messages” are taken as inputs for the devices
in layer k — 1. Each layer of concatenation introduces
an error diluting the information about each of the bits
a;. If at some layer k — 1 the probability of successfully
decoding a; is py_1, at the next level k it will be

1+e_qe
Pk =pr—1p+ (1 —pr_1)(1—p) = % )

where e;_1 and e are biases of py_1 and p, i.e, py_1 =

W% and p = 13¢. The condition in Eq. H for a proto-
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FIG. 1: Bound on p as a function of p. characterizing binary

symmetric channel. p — pg as pc — %

col with k levels of concatenation becomes

ok (1—h<1—;ek>> <1. @3)

For every k it puts a lower bound on e and for k — oo the
bound on e reaches % while the bound on p converges

to our aim, pg.

III. REPLACING CONCATENATION WITH NOISY
CHANNEL

There is, however, an easier way to obtain the bound
po from IC without the need of concatenation. Let us
start by considering the same protocol as before for a
single pair of devices, but change the communications
channel between the sender and the receiver to a binary
symmetric one. Such a channel transmits an unchanged
input bit with probability p., and with probability 1 — p,
it returns the flipped bit. The capacity of this channel is
1 —h(pc). The probability for b; to be equal to a; is ob-
tained with the same formula in Eq. (2), where instead of
pk_1 we use pe, yielding £, The condition in Eq. ,
expressed in the terms of biases becomes

2(1—11(1*26@6)) g1—h<1266). )

The bound implied by the above condition becomes
stronger as p. and the channel capacity decrease as
shown in Fig. |1} For p. approaching 1 the bound on
p approaches po. As we show below, this is a conse-
quence of a more general result.

Result 1. Any bound on nonlocality in the case of unbiased
errors obtained with concatenation procedure can also be ob-
tained by a protocol involving a single pair of devices and a
suitably chosen discrete memoryless channel.

Before we move to the proof, we need to clarify what
we mean by “unbiased errors case”. Let us consider a



single pair of the devices producing probability distri-
bution P(a,b|x,y), where a,b € {0,1,...,d — 1}, and
y € {0,1,...,n —1}. Defining the range of x is not
necessary for this argument. Let us assume a protocol
involving the communication of one of d possible mes-
sages over a classical identity channel such that with
probability p, the receiver makes the right guess b; = a;.
The “unbiased errors” assumption means that p does
not depend on i € {0,1,...,n — 1}, every term in p
corresponding to each value of 4; is equal, and that all
the other “error” cases b; # a; are equally probable
and also uniformly distributed with respect to a;. Ar-
guably, the case of unbiased errors is a special one, but
it is general enough to encompass all currently known
results [1,9}11].

Let us now clarify what we mean by finding “bound
on nonlocality”.  Given P(a,blx,y), one may ask
whether this nonlocal behavior complies with IC’s state-
ment, giving a “yes/no” answer. However, one may
instead ask a quantitative question of how much noise
needs to be added to P(a,b|x,y) in order for it to sat-
isfy IC. It is standard to consider the white noise, and
the guessing probability p in IC is proportional to the
amount of white noise required. Hence, p quantifies
nonlocality of P(a,b|x,y). In some cases, as it is for
CHSH, the bound on p also implies the bound on Bell
inequality.

Proof. Following Ref. [9] we generalize the definition of
the bias e of probability p as

:1+(d—1)e

- )

If we choose to concatenate the protocol k times, as it
is done in Refs. [9) [11], the success probability of b; =

a; will be py = H(ddifl)ek. From the symmetry of the

protocol and unbiasedness of errors, we conclude that
all the mutual information terms in the IC expression

are equal, and given by I(a;;b;) = I;(e"), where

Ii(e) :logd—h(l—i_(dd_l)e> ©
6
fwlog([ji”_

The above expression is known as Fano’s inequality [15],
which is equality in this case (See Appendix|[Afor a short
proof). Let us assume that k is such that k levels of con-
catenation are not enough to demonstrate that p violates
IC, but k + 1 are. In other words:

nk1;(e5) < logd
n* L (1) > log d,

@)

which implies

nly(eh) > Iy(eh). ®)

Optimal e, e e’
d=3 0.295 0.702 10.708
d=4 0.389 0.696 |0.705
d=5 0.436 0.690 |0.700
d=20 [0.531 0.648 |0.659

TABLE I: Optimal e, is the value for which Eq. puts the
tightest bound on e. e is the improved bound, while ¢ is the
bound from Ref. [9].

Let us now take a single pair of the devices and let the
parties communicate over a discrete memoryless chan-
nel channel with uniform errors, i.e., with probability p.
the message is unchanged and with 1 — p, probability it
is changed to one of the other d — 1 messages in accor-
dance with the uniform distribution. Let p, = L}l)ek,
then the capacity of the channel is C = I;(e¥) (See Ap-
pendix[A]for a short proof). The probability for a; = b; is

— — _1)pk+1
pep + 4 ’Zﬂf p) _ 1+ dl)e ! and (agb;) = L&),
foralli € {0,1,...,n — 1}. Therefore, in this case the IC
condition in Eq. (I) reads

nly(¢F1) < € = L(eb). )

If the probability p is such that Eq. (8) holds, the above
inequality will be violated, which means that p can also
be detected by the IC with a single pair of the devices
and a discrete memoryless channel with capacity C. [

IV. NEW AND TIGHTER BOUNDS

In this section, we demonstrate that the bounds on
nonlocality obtained with the new approach are strictly
better in some cases. We also discuss cases in which this
approach can provide bounds while the concatenation
procedure is not applicable.

In the proof of Result |1} instead of choosing p. to be

the success probability corresponding to k-th level of
concatenation, we can take p, = % and optimize
over ¢.. The condition that we use to bound nonlocality

is the following
nli(ece) < I(ec). (10)

Even though it is cumbersome to write the solution for
the optimal e, explicitly, the optimization over a single
real parameter can be done up to an arbitrary numerical
precision. In table |l we compare the bounds on the bias
e of the success probability p implied by Eq. with
the bounds from Ref. [9]], calculated using concatenation
procedure for n = 2.

The major challenge of finding bounds on nonlocal-
ity with the concatenation procedure is calculating each
level’s success probabilities. This calculation is easy
only if one assumes the unbiasedness of errors, as de-
scribed in Result I} This assumption puts a significant



constraint on the choice of the protocol and the corre-
lations P(a,b|x,y) that can be easily bounded using the
IC.

On the contrary, the method suggested in this paper
can be applied to any protocol. Below we give an exam-
ple of bounding nonlocality in a Bell scenario with 3 set-
tings per party and with binary outcomes (often referred
to as 3322 scenario). Let us consider a non-signaling dis-
tribution Pys(a, b|x,y) (x,y € {0,1,2}) given by the fol-
lowing relation

I {1, if (ny) €{(12), 21,221 )
0, otherwise,

with all marginal probability distribution being uni-
form, ie., Y; P(a = i,b = jlx,y) = Y Pla = i,b =
jlx,y) = %,Vi,j. This distribution gives the maximal
violation equal to 1 of the I33p inequality [16]. Let
us now consider a pair of devices producing correla-
tions P.(a,b|x,y) = ePns(a,blx,y) + (1 —e)P(a,b|x,y),
where Py (a,b|x,y) is the white noise distribution for
which Pr(a = i,b = jlx,y) = }I,Vi,j and all values of
x,y. The value of I337; inequality for the considered mix-
ing is 2¢ — 1. We ask a question of the maximal degree of
nonlocality, specified by e, that is allowed by IC. We can
find a protocol, which we specify in Appendix|B} that is
optimal for the nonlocal correlations Pys(a, b|x,y) from
Eq. (II). Using the symmetric channel, parameterized
by ec, in the limit of e — 0 we obtain a bound ¢ — %,

which is not far from the quantum bound of 2, which
can be confirmed (up to a numerical precision) by the
hierarchy of semidefinite programming of Ref. [12]. To
compare, the bound which can be derived from IC with
a channel capacity of 1 is about 0.7445, and there is no
clear way to construct a concatenation procedure for
this protocol or to calculate the corresponding guessing
probabilities.

V. DISCUSSION

We have shown that concatenation can be successfully
replaced by considering different classical communica-
tion channels in the protocols used to bound nonlocality
with IC. Apart from showing that all the results already
obtained can be re-derived with the new approach, we
also showed that some could be improved. Addition-
ally, we gave an example of a scenario that would be
very challenging to approach with the concatenation
procedure. Perhaps the most important goal of this pa-
per is to show that IC’s scope of applicability can be sig-
nificantly widened. Therefore, our paper opens many
possible ways for future work.

We list some of the open questions which we believe
deserve a separate study. In the current paper, we lim-
ited ourselves to a particular type of discrete memory-
less channels, namely symmetric channels. These chan-
nels seem very well suited to analyze Bell inequalities,

which correspond to unique games, that is games in
which for every combination of parties” inputs and one
party output, there is a unique output for the other party
that wins the game. However, for other Bell inequalities,
different channels can yield stronger results, and find
optimal ones is an open question. Additionally, consid-
ering random data in the IC scenario with different al-
phabets could be used to bound nonlocality in distribu-
tions with a bias towards one of the outcomes. Finally,
the statement of IC can be read in the opposite direc-
tion. Namely, given a value of guessing probability, one
can obtain a lower bound on the minimal communica-
tion required for such correlations, which can be used
for randomness certification.
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Appendix A: Technical details of the proof of Result[l]

Fano’s inequality for two random variables a and b
taking values in {0,1,...,d — 1} can be written as fol-
lows

I(a;b) > logd —h(p)— (1—p)log(d—1), (A1)

where p = P(a = b). InEq. @) we took p = Lrd=1)e and
denoted the function on the right-hand side of Eq.
as Ij(e). Let P(a = i,b = j) = r(jli)P(a = i) be the
decomposition of the joint probability distribution of a
and b with a response function (conditional distribution)
r(jli). For the case of probabilities in the derivations of
Result[l]} the form of r(j|i) is the following: r(i|i) = p, Vi,
and r(jli) = %,Vj # 1. The mutual information I(a; )
by definition is equal to

i=0 j=0 g r(jli

(A2)

Since the input a is always taken to be uniformly dis-
tributed, we have that P(a = i) = 1, and hence

Z;.tol r(jli)P(a = i) = %,Vj. From here we can deduce



that

I(a;b) = log(d)

;gg (i) og(r(10)

= log(d) + plog(p) + (1 — p) log (d_ Il?)
(A3)

which is exactly equal to the right-hand side of Eq. (AT).
Now, we give a short proof that capacity of discrete

memoryless channel, which transmits d-dimensional

message unchanged with probability p. = % and

with probability 1 — p, changes it to one of the d — 1
other values according to the uniform distribution, is
equal to I,(e) (given by the right-hand side of Eq. (Al)).

By definition, the capacity of a discrete memoryless
channel is

C =maxlI(a;b),
na (a;b)

(A4)
where b is a guess of a4, and P(a) is the distribution of
a. The proof is similar to the one above, since the re-
sponse function r(j|i) is exactly the same for the consid-
ered channel (where we substitute p with p.). The only
part which requires the proof is that the optimal distri-
bution P(a) is the uniform one. It can be easily seen from
the fact that, first of all, entropy is a concave function,
and that the form of r(j|7) is symmetric.

Appendix B: Protocol for the 3322 scenario

Here, we give a specification of a protocol for the 3322
scenario. In this protocol, the sender has access to three
bits ap, a1, a2, depending on which the choice of mea-
surement x € {0,1,2} is determined. The bit message
m is a function of ag, a1, 4, and the sender’s outcome a.
The decoding function determines the guess b; of a;, de-
pending on i € {0,1,2}. The receiver chooses the mea-
surement according to 7, in the most obvious way y = i.
The decoding functionsare by = m®b P 1, by =m@ b,
and bp = m @b ® 1. The message m = ap ® a ® 1. Below
we specify the function for x by a truth table.

ap ap ax| x
000[0
0012
0100
01 1|1 (B1)
10 0]1
101|0
1 10)2
1 1 1])0.

The above protocol was obtained using simulated an-
nealing [17].
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