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Fidelity susceptibility in Gaussian random ensembles
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(Received 18 December 2018; published 20 May 2019)

The fidelity susceptibility measures the sensitivity of eigenstates to a change of an external parameter. It has
been fruitfully used to pin down quantum phase transitions when applied to ground states (with extensions to
thermal states). Here, we propose to use the fidelity susceptibility as a useful dimensionless measure for complex
quantum systems. We find analytically the fidelity susceptibility distributions for Gaussian orthogonal and
unitary universality classes for arbitrary system sizes. The results are verified by a comparison with numerical
data.
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The discovery of the many-body localization (MBL) phe-
nomenon resulting in nonergodicity of the dynamics in many-
body systems [1] restored also interest in purely ergodic
phenomena modeled by Gaussian random ensembles (GREs)
[2] and in possible measures to characterize them. The gap
ratio between adjacent level spacings [3] was introduced
precisely for that purpose as it does not involve the so-
called unfolding [4] necessary for meaningful studies of level
spacing distributions and yet often leading to spurious results
[5]. Still, the level spacing distribution belongs to the most
popular statistical measures used for single-particle quantum
chaos studies [6–9] and also in the transition to MBL [10–12].
A particular place among different measures was taken by
those characterizing level dynamics for a Hamiltonian H (λ)
dependent on some parameter λ. In the Pechukas-Yukawa
formulation [13,14] energy levels are the positions of fictitious
gas particles, derivatives with respect to the fictitious time
λ are velocities (level slopes), and the second derivatives
describe curvatures of the levels (accelerations). Simons and
Altschuler [15] put forward a proposition that the variance of
velocity distribution is an important parameter characterizing
the universality of level dynamics. This led to predictions
for distributions of avoided crossings [16] and, importantly,
curvature distributions postulated first on the basis of numer-
ical data for GRE [17] and then derived analytically via the
supersymmetric method by von Oppen [18,19] (for alternative
techniques, see Refs. [20,21]). Curvature distributions were
recently addressed in MBL studies [22,23].

Apart from quantum chaos studies in the 1980’s and
1990’s, another “level dynamics” tool has been introduced
in the quantum information area, i.e., the fidelity F [24]. It
compares two close (possibly mixed) quantum states ρ(λ1)
and ρ(λ2) for different values of the parameter λ. For pure
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states, as considered below, and for λ1 = 0 we adopt the fol-
lowing definition, F = |〈ψ (0)|ψ (λ)〉| [25] (note that some-
times fidelity is defined as a square of F ; such an overlap
was considered in the context of the parametric dynamics of
eigenvectors in Ref. [26]). For a sufficiently small difference
of parameter values λ it is customary to introduce a fidelity
susceptibility χ via a Taylor series expansion,

F (ρ̂(0), ρ̂(λ)) = 1 − 1
2χλ2 + O(λ3) (1)

(with the linear term vanishing due to the wave-function
normalization condition). Fidelity susceptibility is directly
related to the quantum Fisher information (QFI) G being
directly proportional to the Bures distance between den-
sity matrices at slightly differing values of λ [27–29], with
G(λ) = 4χ .

Fidelity susceptibility emerged as a useful tool to study
quantum phase transitions as at the transition point the ground
state changes rapidly, leading to the enhancement of χ

[25,28,30–35]. All of these studies were restricted to ground-
state properties while MBL considers the bulk of excited
states (for a discussion of thermal states, see Refs. [36–39]).
In the context of MBL we are aware of a single study
which considered the mean fidelity susceptibility across the
MBL transition [40]. In particular, the issue of the fidelity
susceptibility behavior for GRE still needs to be addressed.
The aim of this Rapid Communication is to fill this gap
and to provide analytic results for the fidelity susceptibility
distributions for the physically most important orthogonal
and unitary ensembles. This provides different characteristics
of GRE as well as a starting point for the study of fidelity
susceptibility in the transition to and within the MBL domain
[41].

Consider H = H0 + λH1 with H0, H1 corresponding to the
orthogonal (unitary) class of GRE, i.e., Gaussian orthogonal
ensemble (GOE) corresponding to the level repulsion param-
eter β = 1 or Gaussian unitary ensemble (GUE) with β = 2.
For such a Hamiltonian one may easily prove that fidelity
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susceptibility of the nth eigenstate of H0 is given by

χn =
∑
m �=n

|H1,nm|2
(En − Em)2

, (2)

with En being the nth eigenvalue of H0. We aim at calculating
the probability distribution of the fidelity susceptibility

P(χ, E ) = 1

Nρ(E )

〈
N∑

n=1

δ(χ − χn)δ(E − En)

〉
(3)

at the energy E . The averaging is over two, independent GREs
(β = 1, 2),

P(Ha) ∼ exp

(
− β

4J2
Tr H2

a

)
, Ha = [Ha,nm], (4)

with a = 0, 1. Using a Fourier representation for δ(χ − χn),
the average over H1 reduces to a calculation of Gaussian
integrals. Since formula (2) involves only the eigenvalues of
H0, the averaging over H0 can be expressed as an average over
the well-known joint probability density of eigenvalues [4]
for a suitable GRE. At the center of the spectrum (E = 0),
after straightforward algebraic manipulations (see Ref. [42]
for details), we get

P(χ ) ∼
∫ ∞

−∞
dωe−iωχ

˝⎡
⎣ det H̄2

det
(
H̄2 − 2iωJ2

β

) 1
2

⎤
⎦

β
˛

N−1

, (5)

where the averaging is now over the (N − 1) × (N − 1) ma-
trix H̄ from an appropriate Gaussian ensemble. Similar aver-
ages have been considered in studies of curvature distributions
[18–20], nonorthogonality effects in weakly open systems
[43,44], and considered in a more general fashion for the GOE
case in Ref. [45].

To perform the average in (5) we employ a technique devel-
oped in Ref. [20] and express the denominator as a Gaussian
integral over a vector z ∈ RN−1 for β = 1 or z ∈ CN−1 for
β = 2. Employing the invariance of GRE with respect to
an adequate class (orthogonal or unitary) of transformations
allows us to choose z = r[1, 0, . . . , 0]T , and hence we arrive
at

P(χ ) ∼
∫ ∞

0
drrsδ(χ − 2J2r2/β )〈det H̄2βe−r2X 〉N−1, (6)

where X = ∑N−1
j=1

∣∣H̄1 j

∣∣2
depends on the first row of H̄

only, and s = β(N − 1) − 1. After calculating the ensu-
ing Gaussian integrals over H̄1 j we can reduce the av-
eraging to one over the (N − 2) × (N − 2) block of H̄ ,
Vi j = H̄i+1, j+1 for 1 � i, j � N − 2, using the expression

det H̄ = det V
(

H̄11 − ∑N−1
j,k=2 H̄1 jV

−1
jk H̄∗

1k

)
for a determinant

of a block matrix.
Integrating (6) over r we find (details described in

Ref. [42]) that the desired fidelity susceptibility distribution
PO

N (χ ) for GOE reads

PO
N (χ ) = CO

N√
χ

(
χ

1 + χ

) N−2
2

(
1

1 + 2χ

) 1
2
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FIG. 1. Fidelity susceptibility PO
N (χ ) distribution for GOE matri-

ces of small size N . Numerical data denoted by markers. Solid lines
correspond to (7) with IO,2

N given by (10).

×
[

1

1 + 2χ
+ 1

2

(
1

1 + χ

)2

IO,2
N−2

]
, (7)

where CO
N is a normalization constant and

IO,2
N = 〈det V 2(2 Tr V −2 + (Tr V −1)2)〉N/〈det V 2〉N . (8)

The form of (8) is suited for a random matrix theory calcu-
lation of IO,2

N . However, to obtain IO,2
N it suffices to note that

our calculation implies that

〈det H̄2e−r2X 〉N−1|r=0 = J2〈det V̄ 2〉N−2
(
IO,2

N−2 + 2
)
, (9)

showing that IO,2
N is actually determined by the second mo-

ments of determinants of matrices of appropriate sizes from
GOE. Moments as well as the full probability distribution of
the determinant of GOE matrices were obtained in Ref. [46]
for arbitrary N . Using the expression for the second moment
in (9), we get

IO,2
N =

{
N N+2

N+3/2 , N even,

N + 1/2, N odd.
(10)

The formula (10) is exact for arbitrary N � 0. Inserting appro-
priate values of IO,2

N into (7) we obtain an exact formula for
the fidelity susceptibility distribution PO

N (χ ) for a GOE matrix
of arbitrary size N . A comparison of the resulting distribution
PO

N (χ ) with numerically generated fidelity susceptibility dis-
tributions for small matrix sizes N � 20 is shown in Fig. 1.
However, it is the large N regime which is interesting from
the point of view of potential applications. For N 
 1 the
IO,2 increases linearly IO,2

N = N with the matrix size N . This,
together with the form of PO

N (χ ), implies that PO
αN (αχ ) ≈

PO
N (χ ). Indeed, the distribution P(χ ) scales linearly with N ,

as visible in Fig. 2. The linear in N scaling of χ suggests to
introduce the scaled fidelity susceptibility x = χ/N . Inserting
it into (7) and taking the N → ∞ limit, one obtains

PO(x) = 1

6

1

x2

(
1 + 1

x

)
exp

(
− 1

2x

)
, (11)

which is the final, simple, analytic result for a large size
GOE matrix. It performs remarkably well also for modest
size matrices, e.g., N = 200—compare Fig. 3. For smaller
matrices, for instance, for N = 20, the rescaled distribution
P(x) has a correct large x tail and a nonzero slope at x = 0
as compared to nonanalytic behavior of PO(x) at x = 0 in
(11). Observe also that the mean scaled fidelity susceptibility
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FIG. 2. Fidelity susceptibility PO
N (χ ) distribution for GOE matri-

ces of different sizes as indicated in the figure. (a) and (b) correspond
to lin-lin and log-log scales allowing for a detailed test of accuracy
both for the bulk and for the tails of the distribution. Solid lines
correspond to (7) with IO,2

N given by (10).

does not exist as the corresponding integral diverges loga-
rithmically, showing the importance of the heavy tail of the
distribution. Expression (11) was also obtained in the study of
the so-called complexness parameter [43].

Starting from (6) for GUE (β = 2), after a few techni-
cal steps (described in detail in Ref. [42]), we obtain the
following, exact for arbitrary N , expression for the fidelity
susceptibility distribution,

PU
N (χ ) = CU

N

(
χ

1 + χ

)N−2 (
1

1 + 2χ

) 1
2

[
3

4

(
1

1 + 2χ

)2

+ 3

2

1

1 + 2χ

(
1

1 + χ

)2

IU,2
N−2 + 1

4

(
1

1 + χ

)4

IU,4
N−2

]
,

(12)

where CU
N is a normalization constant. PU (χ ) for GUE de-

pends on two N-dependent factors IU,2
N−2 and IU,4

N−2 that remain
to be determined.

They take the form [42]

IU,K
N =

∫
dZK,N

˝

det H4

⎛
⎝∑

j,k

z jH
−1
jk z∗

k

⎞
⎠

K˛

N

, (13)

where dZK,N = (πJ )K
∫ ∏

jd
2z je

−π
∑

j |z j |2/
〈
det H4

〉
N , K=2, 4

and H is an N × N GUE matrix. Performing the integration
in (13) we find that IU,2

N can be expressed in the following
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FIG. 3. Distribution of rescaled fidelity susceptibility PO(x) for
GOE; numerical data denoted by markers, and solid lines are
formula (11).

way,

IU,2
N = J2 〈det H4(Tr(H−2) + (Tr H )−2)〉N

〈det H4〉N
. (14)

Introducing the following generating function

ZN ( j1, j2) = 〈det H2 det(H − j1) det(H − j2)〉N , (15)

we immediately verify that

IU,2
N = J2

ZN (0, 0)

(
2

∂2

∂ j1∂ j2
ZN (0, 0) − ∂2

∂ j2
1

ZN (0, 0)

)
. (16)

The generating function ZN ( j1, j2) is actually a correlation
function of a characteristic polynomial of the H matrix. It was
shown in Refs. [47,48] that such quantities can be calculated
exactly as determinants of appropriate orthogonal polynomi-
als. A kernel structure of those expressions has been identified
in Ref. [49], leading to formulas most convenient in our
calculation of ZN ( j1, j2). The generating function Z ( j1, j2) is
given by

ZN ( j1, j2) = CN,2

( j1 − j2)
lim

μ2→0

∂

∂μ2

× det

[
WN+2( j1, 0) WN+2( j2, 0)

WN+2( j1, μ2) WN+2( j2, μ2)

]
, (17)

with the kernel WN+2(λ,μ) defined as

WN+2(λ,μ) = HN+2(λ)HN+1(μ) − HN+2(μ)HN+1(λ)

λ − μ
. (18)

The Hermite polynomials HN (λ) are orthogonal with respect
to the measure e− 1

2J2 x2

dx and normalized in such a way that
the coefficient in front of λN is equal to unity. We have found
a closed formula for the generating function ZN ( j1, j2) (see
Ref. [42] for details). Calculating the derivatives in (16) and
taking the limits j1 → 0 and j2 → 0, we obtain

IU,2
N =

{
1
3 N, N even,
1
3 (N + 1), N odd.

(19)

The next step is to use the idea analogous to the argument
with the ratio of second moments of the determinants of GOE
matrices which allowed us to obtain the exact expression
for IO,2

N (9). Employing formulas for the fourth moment of
the determinant of the GUE matrix [50,51] and taking into
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FIG. 4. Fidelity susceptibility distribution PU
N (χ ) for GUE; nu-

merically generated data denoted by markers, and solid lines are
formula (12) with IU,2

N and IU,4
N given by (19) and (20), respectively.
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SIERANT, MAKSYMOV, KUŚ, AND ZAKRZEWSKI PHYSICAL REVIEW E 99, 050102(R) (2019)

0.0 0.5 1.0 1.5x
0

1

2

P (x)

(a) N=924

N=3432

N=12870

10−1 100 101 102

10−6

10−4

10−2

100

P (x)

(b) N=924

N=3432

N=12870

FIG. 5. Distribution of rescaled fidelity susceptibility PU (x) for
GUE; numerical data denoted by markers, and solid lines are
formula (21).

account the expression for IU,2
N , we obtain

IU,4
N =

{
N2 + 2N, N even,

N2 + 4N + 3, N odd.
(20)

The distribution (12), together with expressions (19) and
(20) for IU,4

N and IU,2
N , is the exact fidelity susceptibility

distribution for GUE for arbitrary N . As shown in Fig. 4,
expression (12) is confirmed by numerical data for differ-
ent system sizes N 
 1. Similar, perfect agreement of our
formula PU

N (χ ) with numerically generated data is obtained
for small N � 2 (data not shown). Moreover, similarly to
the GOE case, PU

N (χ ) scales linearly with increasing N .
Therefore, considering again the distribution of scaled fidelity
susceptibility x = χ/N , we arrive at the large N limit of the
simple form

PU (x) = 1

3
√

π

1

x5/2

(
3

4
+ 1

x
+ 1

x2

)
exp

(
−1

x

)
, (21)

which works well for GUE data as shown in Fig. 5.
Remarkably, the obtained distributions of fidelity suscep-

tibility both for GOE (7) and GUE (12) are exact for arbi-
trary N � 2. This is an unusual situation, even for GRE—
for instance, the simple analytic form of the level spacing
distribution P(s) for N = 2 becomes more complicated for
larger N [2]. We study thus the onset of universal large N
behavior of the rescaled fidelity susceptibility distribution
P(x). The results are shown in Fig. 6. Clearly, the power-
law tail of the distributions for GOE (GUE) is observed
for all N . This power-law tail arises in instances when the
sum for χn (2) is dominated by a single term with a small
energy denominator. The algebraic decay x−2 (x−5/2) for GOE
(GUE) can be derived from the small s behavior of the level
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FIG. 6. Distributions of rescaled fidelity susceptibility P(x) for
(a) GOE and (b) GUE for matrix size N . Red dashed lines correspond
to the universal N → ∞ GOE/GUE limits.

spacing distribution P(s) [23,52]. The approach to the limiting
N → ∞ distributions PO,U (x) is associated with a decreasing
number of instances of very small fidelity susceptibility.

To conclude, we have derived closed formulas for fidelity
susceptibility distributions corresponding to level dynamics
for both the orthogonal and the unitary class of Gaussian
random ensembles. Particularly simple analytic expressions
are found in the large N limit. The fidelity susceptibility
distributions obtained for quantally chaotic systems may be
compared with the results found for GOE (GUE) in order to
characterize the degree to which a given system is faithful
to random matrix predictions. The obtained distributions also
open a way to address level dynamics in the transition between
ergodic and many-body localized regimes [41].

As a last touch let us mention that fidelity susceptibility is
experimentally accessible by Bragg spectroscopy [53], e.g., in
ultracold atomic systems [54,55], or by a direct measurement
of many-body wave functions overlapping either in a NMR
setting [56] or a system of ultracold bosons [57]. That paves a
way for comparing experimental measurements with universal
features of the fidelity susceptibility distribution provided in
this work.
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