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Level statistics of systems that undergo many-body localization transition are studied. An analysis of the
gap ratio statistics from the perspective of inter- and intrasample randomness allows us to pin point differences
between transitions in random and quasirandom disorder, showing the effects due to Griffiths rare events for
the former case. It is argued that the transition in the case of random disorder exhibits universal features that
are identified by constructing an appropriate model of intermediate spectral statistics which is a generalization
of the family of short-range plasma models. The considered weighted short-range plasma model yields a very
good agreement both for level spacing distribution including its exponential tail and the number variance up to
tens of level spacings outperforming previously proposed models. In particular, our model grasps the critical

level statistics which arise at disorder strength for which the intersample fluctuations are the strongest. Going
beyond the paradigmatic examples of many-body localization in spin systems, we show that the considered
model also grasps the level statistics of disordered Bose- and Fermi-Hubbard models. The remaining deviations
for long-range spectral correlations are discussed and attributed mainly to the intricacies of level unfolding.
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I. INTRODUCTION

It is 90 years already since Wishart in a seminal paper
[1] introduced the concept of random matrices into science.
His original aim was to generalize the chi-squared distribu-
tion to multiple dimensions, random symmetric non negative
matrices played then the role of random variables. The corre-
sponding Wishart distribution found many applications from
modern random matrix theory [2] to various applications in
physics [3-6], wireless communications [7] financial data for
large portfolios [8] etc.

The next big step came with the introduction of Gaussian
ensembles and the realization of Wigner and others [9] that
spectra for usually unknown complex nuclear Hamiltonians
may be understood statistically using properties of these en-
sembles obeying appropriate symmetries. It became a text-
book knowledge that there exist exactly three universality
classes [10,11]: the Gaussian orthogonal ensemble (GOE)
corresponds to systems invariant with respect to (generalized)
time reversal, the Gaussian unitary ensemble corresponds to
systems with broken time-reversal invariance, and the sym-
plectic ensemble corresponds to half-integer spin systems
with preserved time-reversal invariance and no other sym-
metries present. Thus, since the sixties, it was the common
knowledge that spectra of many-body interacting systems are
statistically well described by random matrix theory (RMT).
Further justifications of successes of RMT come from the
theory of Dyson yielding the Gaussian ensembles from an
appropriate statistical mechanics description [12-15].
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An interesting development appeared in the eighties—the
conjecture that statistical properties of spectra of systems
chaotic in the classical limit are faithful to random ma-
trix predictions [16]. This came as a surprise—even simple
single-particle Hamiltonians containing no randomness and
represented by large, very sparse (due to strong selection
rules in appropriately chosen basis) matrices were statistically
faithful to RMT predictions as revealed, e.g., in the study of
hydrogen atom spectrum in the presence of strong magnetic
field inducing the so called quadratic Zeeman coupling [17].
More precisely, after unfolding the levels (obtaining the mean
density of states equal to unity), the remaining fluctuations
were faithfully represented by predictions of RMT [18] as
shown by nearest-neighbor spacing distribution- P(s), the so
called number variance (i.e., the variance of the number of lev-
els in an interval of length L), correlation functions, etc. The
same measures indicated, however, that the transition from the
chaotic to integrable situation (described by Poisson ensemble
of uncorrelated levels for systems of large dimensions [18])
seems system specific and determined by the structure of the
underlying classical mechanics in the mixed phase space [19].

Similar transition from extended to localized states, as
revealed, e.g., by a change of level statistics from GOE-like to
Poisson-like, appears in the Anderson localization transition.
The corresponding level statistics has been addressed in the
seminal paper [20] followed by other important developments
[21-23] to mention early contributions—for a review see
Ref. [24]. In those cases, a single-particle problem in disor-
dered medium was addressed.

Recent years provided another important example of
such a transition between ergodic (describable by stan-
dard Gaussian RMT) and integrable limits—the many-body
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localization (MBL). While for weak disorder many-body in-
teracting systems behave as expected for a long time being
ergodic and following Gaussian RMT predictions, for a suf-
ficiently strong disorder a gradual (for finite systems sizes)
crossover to localized situation occurs [25]. This phenomenon
attracted an enormous interest in the last 10 years as it pro-
vides a robust example of nonergodic behavior in a complex
many-body system. Instead of effectively thermalizing (as
suggested by the eigenvector thermalization hypothesis (ETH)
[26]), such strongly disordered systems often remember their
initial state as manifested in a series of spectacular experi-
ments [27-29]. Already early theoretical studies [30] showed
that a transition to MBL situation is accompanied by a change
of level statistics from that corresponding to GOE to Poisson-
like for MBL.

Importantly, it has been suggested that MBL phase is
indeed integrable [31,32], namely, in MBL phase, a complete
set of local integrals of motions (LIOMS) may be defined.
On one side, finding LIOMs provides information about the
system for a given disorder realization (LIOMs are disorder
realization dependent), on the other side, the very existence
of LIOMs explains the Poissonian statistics observed deep
in the localized phase. While the two extremal situations—
the metallic, GOE-like ergodic behavior for a weak disorder
and the full MBL phase—seem to be presently quite well
understood, it is desirable to understand and describe the
nature of the ergodic-MBL transition.

The problem is not simple; it has been found, in particular,
that the nature of the disorder plays a decisive role in the
character of the transition [33,34]. Intrasample randomness
was indentified as the dominant feature for quasiperiodic dis-
order (QPD) while the intersample randomness is an essential
property of transition for purely random disorder (RD). Those
important observations were made studying the entanglement
entropy behavior.

In this work, we show that a proper analysis of gap ratio
statistics allows us to get similar insight on the randomness of
system in MBL transitions as the entanglement entropy [33].
Our method is conceptually simpler as it relies only on the
spectrum of the system and as such can be straightforwardly
used in studies of various complex systems. Secondly, this
analysis, as a byproduct, gives hints on the construction of
universal model of level statistics for MBL transition which
we provide generalizing earlier attempts [20,35,36]. We in-
troduce a weighted short-range plasma model (wSRPM) and
argue that it describes faithfully the level statistics during the
whole crossover between ergodic and MBL phases at system
sizes accessible in exact diagonalization studies. Taking into
account the intersample randomness (an inherent feature of
MBL transition in systems with random disorder), the pro-
posed model grasps correctly not only the bulk properties of
the level spacing distribution P(s) but also its exponential tails
and correctly reproduces the number variance, >2(L), at L of
the order of tens level spacings. This implies that wSRPM re-
flects faithfully both short-range and long-range spectral cor-
relations in systems across the ergodic-MBL crossover. Re-
maining small discrepancies are discussed in details providing
a further insight into the long-range spectral correlations of the
system. Furthermore, we show that the wSRPM is universal as
it works across the whole ergodic to MBL crossover not only

in spin models but also in disordered bosonic and fermionic
systems. We compare our results with earlier propositions
[35-39] showing that the model proposed by us represents
the data much more faithfully. We also discuss an alterna-
tive model of level statistics—weighted power-law random
banded matrix model, which also accurately grasps spectral
correlations across the ergodic-MBL crossover.

II. GAP RATIO ANALYSIS

A dimensionless ratio of consecutive energy levels gaps
(referred as the gap ratio) was introduced in Ref. [30]. It
is defined as r, = min{$,, 6,—1}/ max{s,, §,—1}, where &, =
E,;1 — E, is an energy difference between two consecutive
levels. The average gap ratio 7 is different for systems with
extended eigenstates (in the following we shall concentrate
on the Gaussian orthogonal ensamble (GOE) for time-reversal
invariant systems): 7gog ~ 0.53 and for localized systems
Fpoi &~ 0.39 as was analytically demonstrated in Ref. [40].
That property was used by many authors in attempts to
localize the MBL transition [30,41-49].

The usual way of calculating the mean gap ratio 7 is to
average the r, variable over a certain number of energy levels
getting a mean gap ratio for one sample rg = (r,)s. Then, the
mean gap ratio is obtained by averaging of rg over disorder
realizations 7 = (rg)q4is. While, as mentioned above 7 obtained
in this way reflects the character of eigenstates of the system
[30,41-45,47] a part of information encoded in the r, vari-
ables is necessarily lost. Let us examine P(rs)—the distribu-
tion of the sample averaged gap ratio rs—it provides a direct
information about variations of the rg for different disorder
realizations. As an example, we consider the XXZ spin-1/2
chain with additional next-nearest-neighbor coupling (similar
to that of Ref. [33])
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where S; are spin-1/2 matrices, ¢ = (v/5 — 1)/2 (the golden
ratio), and ¢ is a fixed phase for a given disorder realization
(leading to QPD) or is random on each lattice site (leading to
RD with the same on-site distribution, as in the QPD case)
[33]. We fix J = 1 as the energy unit and we study the case
of J; = J first. Periodic boundary conditions are assumed
so that §K+1 = 5’1. For the system size K = 16, we consider
sequences of N = 400 consecutive eigenvalues from the mid-
dle of the spectrum yielding a collection of rg values for
ngis = 2000 disorder realizations. The resulting distributions
P(rg) for different disorder strengths W are shown in Fig. 1.

Had all r,, been independent of each other the distribution
of rg = Zf:]=1 r,/N should be Gaussian with width deter-
mined by the variance of the r, distribution and proportional
to 1/+/N. Despite the correlations—particularly strong for
GOE—the P(rg) are Gaussian in the limiting cases of GOE
and Poisson statistics. Surprisingly, the P(rg) distributions
remain Gaussian for QPD across the transition.

In a striking contrast, the distributions in the RD case
become strongly asymmetric with enlarged variance in the
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FIG. 1. (a) Distributions P(r) for quasiperiodic disorder (QPD)
of strength W. Dashed lines give limiting GOE and Poisson behav-
iors. The tail of the W =1 distribution indicates that QPD repro-
duces GOE statistics only approximately. (b) Distributions P(ry) for
random disorder (RD). (c) The intersample variance Vs for RD and
QPD and (d) the intrasample variance V; for QPD and RD during the
transition.

transition region. This reflects the intersample randomness
importance for the RD and is a clear, nice manifestation of the
existence of rare Griffiths regions [50-53]: for samples with
7 close to GOE there exist realizations of disorder leading
to rg close to Poisson limit. Similarly, on a localized side
for 7 close to integrable limit there are rare events with rg
values close to GOE value. The stark difference in the P(rg)
distributions between the RD and QPD cases can be quantified
by calculating a variance: Vg = (r§ — 7)gis. As Fig. 1(c)
shows, the intersample variance Vg has a clear peak in the
MBL transition for the RD whereas it varies only slightly for
the QPD.

Consider now the variance v; of the rg variable, v; =
(r,% — r§)5. Averaged over disorder realizations V; = (vy)is,
it provides information about fluctuations of 7, within a
single spectrum of the system at a certain disorder strength—
characterizing intrasample randomness. As could be expected
from the long-range correlations of GOE, it is small for
GOE and conversely, it is maximal for Poissonian spectrum.
Figure 1(d) shows that it behaves similarly for QPD and
RD interpolating between the values for GOE and Poisson
statistics. The transition is sharper for the system with QPD,
implying that it is less affected by finite size effects [33].

Seeing that the distribution P(rg) and the variances Vs and
V; provide a valuable information about the randomness at
the MBL transition, let us switch our attention to the more
standard Heisenberg chain case taking J; = 0 in Eq. (1) and
assuming random uniform disorder so that W cos(2nw¢i + ¢)
is exchanged by h; € [-W, W] in Eq. (1), explicitly
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FIG. 2. (a) The variance Vs of the r¢ distribution characterizing
the intersample randomness, (b) the variance V; reflecting the in-
trasample fluctuations in the spectrum of the system. (c) The rescaled
intersample variance Vs and (d) the intrasample variance V; collapse
after the rescaling of the disorder strength with Wz = 3.5 and v =
0.95. The data are for system sizes K € {14, 16, 18, 20}.

Despite the fact that the distribution of disorder is different
and the studied model contains now nearest neighbor cou-
plings only, the P(rg) behaves quite similarly to the case
shown in Fig. 1(b) revealing strong asymmetry and broad-
ening across the transition—as shown in Fig. 2. Particularly,
the broader distributions in the transition regime suggest that
one may use the maximal variance Vs as an indicator of the
transition point.

A standard finite size scaling of different quantities can
be performed assuming W — (W — W¢)K'/V. For 7 such an
analysis has been performed already [43,54] with the data
collapsing to a single curve. Similar scaling may be used
for the variance Vs. Observe that both the position of the
maximum as well as its value depend on the system size
[Fig. 2(a)].

If, together with the rescaling of the disorder strength,
the variance Vg is rescaled according to Vg — Vg = (Vs —
Voor)/K* (where Vo is the intersample variance for GOE)
the data for various system sizes collapse onto a single curve
[Fig. 2(c)] for the exponents v = 0.95(10), x = 1.2(1), and
the critical disorder strength We = 3.5(1). The scaling of the
Vs will necessarily cease to work for larger system sizes as the
support of the P(rg) distribution is limited by 7py; and Fgog.
On the other hand, the critical disorder strength We = 3.5(1)
and the exponent v = 0.95(10) are in nice agreement with
results of [43]. A similar finite size scaling may be performed
for the intrasample variance V; with the same Wy and v
[Fig. 2(d)]. It is notable that all three measures 7, Vs and V;
scale in a very similar manner. Being interconnected they still
provide different insights into physics of the system during the
MBL transition.

The gap ratio analysis demonstrates that more than just
an overall information about the crossover between ergodic
and MBL regimes can be obtained from the r, variables.
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The considered inter- and intrasample variances Vs and V;
reflect nicely the differences between RD and QPD univer-
sality classes. Furthermore, the P(rg) distribution quantifies
the intersample fluctuations of a system undergoing MBL
transition and gives a particularly clear demonstration of the
Griffiths regime.

Moreover, the gap ratio analysis hints how to formulate
the wSRPM model of spectral statistics across the MBL
transition for the random disorder—namely, the ensemble we
are looking for should take into account the large intersample
randomness of the RD case. The problem of construction of
such an ensemble will be considered in the remaining part of
the manuscript. We start by reviewing the existing models of
level statistics in the MBL transition.

III. LEVEL STATISTICS IN MBL TRANSITION

A number of models for intermediate statistics in the
MBL transition have been proposed in Refs. [35,36,38,39].
In this section, we compare level spacing distributions P(s)
and number variances X.2(L) predicted by those models with
data for the standard model of MBL—XXZ spin-1/2 chain
Eq. (2), studied already in the previous section. As we have
seen this model undergoes a transition to MBL at Wy & 3.5 in
the thermodynamic limit K — oo, in the center of the spec-
trum (We ~ 3.7 was obtained in Ref. [43]). Figure 3 shows
level spacing distribution P(s) and number variance X%(L)
for the system (2) of size K = 16 at disorder strength W =
1.9 compared with predictions of different proposed models
[35,38,39] of the flow of level statistics between GOE and PS
limits supplemented by data for the short-range plasma model
(SRPM) [55]. The numerical data for spacing distribution and
the number variance for XXZ spin chain are fitted with those
models.

Mean-field plasma model. The work [35] describes the
flow of level statistics across the MBL transition. Close to
the ergodic regime a mean-field plasma model [21] with
an effective power-law interaction between energy levels is
proposed. It predicts the level spacing distribution and the
number variance to be

P(s) = CisPe™ @ and  To(L) x L 3)

with C; » determined by normalization conditions (1)=(s)=1.
The exponents B8 and y reflect a local repulsion of energy
levels and an effective range of interactions between energy
levels. They are treated as fitting parameters which vary
across the transition. Note that for y = 1 the eigenvalues are
interacting only locally leading to semi-Poisson statistics

Ba—(B+D)s _l

P(s) xx se and X,(L) B ]L. 4)
Between GOE and Poisson limits the exponent y satisfies
0 < y < L. It follows from (3) that tail of the level spacing
distribution decays faster than exponentially with s and that
the number variance X%(L) increases as a power law of L. The
level spacing distribution and the number variance predicted
by this model are denoted by the solid violet line in Fig. 3:
the values of 8 and y are obtained by the least square fit to
the bulk of P(s) and the multiplicative factor in front of the
¥2(L) is treated as the third fitting parameter. While the bulk
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FIG. 3. (Top) Level spacing distribution P(s) for XXZ spin chain
(2) of size K = 16 at disorder strength W = 1.9 compared with
predictions of various models of the flow of level statistics between
GOE and PS limits in the MBL crossover discussed in the main
text. The vertical axis of the main plot is logarithmic to enable
the comparison of tails of the distributions, inset shows the data
in doubly linear scale; RP: the Rosenzweig-Porter model at ¢ =
0.0016; BG: B Gaussian ensemble with 8 = 0.81; SRPM: short-
range plasma model with the range of interactions & = 5; SM: the
mean-field model (3). (Bottom) The number variance £2(L) for the
same system, inset shows the long-range behavior of £?(L) which
encodes long-range spectral correlations of eigenvalues. Gray dashed
lines correspond to level spacing distributions and number variances
for GOE and PS limits.

of the level spacing distribution is nicely recovered, the tail of
the P(s) distribution and the number variance are clearly not
matching the data for W = 1.9.

This two features were shown to be not obeyed by a system
across the MBL crossover in [36] where it was demonstrated
that the level spacing distributions decay exponentially with
s. At the same time the number variance increases as LY with
y > 1 close to the ergodic phase and as the system becomes
more localized it becomes asymptotically linear for large L.

Rosenzweig-Porter ensemble. Another work [38] suggest
that Rosenzweig-Porter (RP) ensemble can be appropriate
to describe the MBL transition. Multifractal properties of
eigenvectors of this model, which is defined as an ensemble
of real symmetric (for 8§ = 1 orthogonal class relevant for
us) random matrices M = (M;;) of size n x n with matrix
elements being independent Gaussian variables with zero
average values M;; = 0 and

(M7)=1, and (M})=0/2 Q)
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were studied in Ref. [56]. The dotted line in Fig. 3 shows the
obtained level spacing distribution and the number variance
which fits best the data for the XXZ spin chain at W = 1.9.
The presented data are for n = 3000 and o = 0.0016 and
are in rather poor agreement even regarding the bulk of the
P(s) distributions. Moreover, at L 2 3, the number variance
bends abruptly upwards—a feature which we do not observe
for the W = 1.9 data. Similar trend persists at larger disorder
strengths W indicating that one cannot reproduce both the
level spacing distribution and the number variance ¥?(L) of
the XX Z spin chain across the MBL crossover within the RP
ensemble.

B-Gaussian ensemble. The two remaining models [39,55]
can be specified by a joint probability distribution function
(JPDF) of eigenvalues. A JPDF for a random matrix en-
semble can be written as the probability distribution of a
one-dimensional gas of classical particles with total energy
W(E, ..., E,)

P(E, ..

EN) =Zy' exp(=BW(E,, ..., E,)), (6)

where Zy is a normalization constant and the total energy

W(EL, ..., E) =Y UE)+ Y V(IE-E ()

i<j

is determined by the trapping potential U (E') and interparticle
interactions V (|E — E’|). For instance, for harmonic trapping
potential U(E) E?, and logarithmic interactions V (|E —
E'))=—1In(JE — E’|) and B = 1 one recovers from (6) the
JPDFs for GOE, for which the interactions in (6) are between
all pairs of eigenvalues which reflects the long-range spectral
correlations of the GOE ensemble.

One way of constructing an ensemble with statistical
properties intermediate between GOE and PS is to put a
rational 8 € [0, 1] into JPDF (6)—in such a way a B-Gaussian
ensemble (BGE) arises. A recent work [39] uses BGE to
describe the level spacing distribution P(s) and the gap ratio
distribution in the MBL transition. Setting up appropriate
tridiagonal matrices [57] of size n = 10° and diagonalizing
them, we obtain P(s) and X2(L) for this ensemble—denoted
by the green line with squares in Fig. 3. The agreement of
this model with XXZ numerical data in the bulk of the P(s)
is not perfect. The disagreement in the tail of the P(s) and
the number variance is even more pronounced. Long-range
correlations of eigenvalues in BGE are visible in the spectral
rigidity of the spectrum—for the acquired data the number
variance grows only logarithmically, just like in the GOE case,
in a violent disagreement with the XXZ data. Thus, contrary
to statements in Ref. [39] based on short-range correlations
only, the SGE is not a good candidate to describe the flow of
level statistics between GOE and PS regimes across the MBL
transition.

Short-range plasma models. Another way of constructing
intermediate level statistics is to restrict the range of the
logarithmic interactions in (6) to a finite number %, which
leads to a family of short-range plasma models (SRPMs)
[55]. Consider N — oo particles in a ring geometry Ey <
Ey <...<Ey <Eny1, Enyi1r = Er mod N with logarith-
mic interaction among & neighboring eigenvalues so that the

JPDF is given by

N
PUEL .. En) =23 [[IE = Evnil? . |E = Bl
i=0

®)

For integer values of & and B, this model can be analytically
solved yielding the level spacing distribution

Pl (s) = "W (s)e= A+, ©)

where W(s) is a polynomial. The corresponding number
variance has asymptotically linear behavior:

2 L—o0 L
Zh’ﬂ(L) — Wl

The SRPM can be solved analytically—see Appendix A for
details. While grasping the bulk of the level spacing distribu-
tion P(s) accurately, the SRPM model does not outperform
the mean-field model [Egs. (3) and (4)]. One still does not
obtain the correct tails of the level spacing distribution P(s) or
the correct slope of the number variance X?(L)—see the line
with triangles in Fig. 3.

(10)

IV. THE WEIGHTED SRPM MODEL

The preceding section shows that the analyzed models
reproduce the bulk of the level spacing distribution and hence
grasp purely local correlations of eigenvalues of a system in
ergodic to MBL crossover. However, when tails of the level
spacing distributions as well as the number variance are con-
sidered, the differences between data for XXZ spin chain and
the predictions of the models are apparent. This shows that
the models do not faithfully reproduce correlations between
eigenvalues on scales larger than few level spacings. The
mean-field plasma model, 8-Gaussian ensemble and SRPMs
tend to underestimate the number variance predicting stronger
long-range correlations between eigenvalues than are actually
observed across the MBL crossover. The opposite is true for
the RP ensemble. All in all, the SRPM with its asymptotically
exponentially decaying level spacing distribution and asymp-
totically linear number variance gives predictions closest to
the data for XXZ spin chain. For that reason, we choose
the SRPM as a basic building block of a more complicated,
weighted ensemble which, by construction, takes into account
another feature of the MBL crossover—the large intersample
randomness.

Results of Sec. II indicate that large intersample random-
ness is an inherent feature of the MBL transition in systems
with purely random disorder. It manifests itself in shape of
a distribution P(rg) of the gap ratio for a single disorder
realization rg = (r,)s, which significantly broadens in the
regime of MBL transition. The broadening of P(rg) shows that
system which has predominantly ergodic features becomes
more localized for certain disorder realizations—the converse
statement for mostly localized system is also true. The small
fraction of events for which the system is more localized than
usually reveals itself in the tail of the level spacing distribution
and in the number variance. For instance, consider an ensem-
ble of matrices created in such a way that with probability
1 — p the matrix is taken from GOE and with probability
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FIG. 4. Level spacing distribution P(s) for XXZ spin chain
(2) of size K = 16 at disorder strength W = 2.5 (solid blue line):
(left) lin-lin and (right) lin-log scales to facilitate comparison of tails
of P(s). Selecting disorder realizations for which rg is from a given
interval results in statistics with properties which vary between those
of an ergodic and nearly localized system. The gray dashed lines
correspond to level spacing distributions of GOE and PS.

p < 1 it has the semi-Poisson level statistics Pf:ll. The bulk
of the level spacing distribution of such an ensemble will be
very close to the Wigner distribution Pgog(s) of the GOE ma-
trix ensemble (as p < 1). However, for large level spacings,
the distribution will be dominated by exponentially decaying
tail of the level spacing distribution P(s) from the small
fraction of matrices with semi-Poisson statistics. Analogously,
the number variance %2(L) will be a sum of logarithmically
growing number variance for GOE and linearly increasing
number variance for semi-Poisson statistics. Hence, it will be
dominated by the latter and increase linearly with L with a
very good approximation.

This leads us to a question whether the intersample ran-
domness can be responsible for the exponential tails of level
spacing distribution and a linear number variance in the MBL
transition via the mechanism described above. To verify this,
we examine level statistics of XXZ system at certain disorder
strength but accept only disorder realizations for which the
rs belongs to a certain narrow interval—results for W = 2.5
are presented in Fig. 4. The procedure of selecting rg affects
significantly the resulting level statistics. As the interval
of rg shifts towards smaller values of rg one obtains level
spacing distributions with weaker and weaker level repulsion
characterized by decreasing 8 and with growing weight of the
exponential tail. Both features are precisely the asymptotic
characteristics of the level spacing distribution for SRPM (9)
for appropriately chosen S and h. However, our goal
is to reproduce the full level statistics. An appropriate
model should thus combine the contributions from disorder
realizations with different localization properties reflected by
the varying value of rs.

This leads us to the formulation of the weighed short-range
plasma model (WSRPM) which, by definition, has JPDF given
by

Pusrwp(Er, ... EN) = Y ¢/Pp(Er, ..., Ey)  (11)

where h; and f; range over an appropriate set of val-
ues and c¢; are weight coefficients (3, ¢; = 1). The weight

coefficients are determined by the requirement that the wS-
RPM reproduces the intersample randomness reflected by the
P(rg) distribution. By integrating the JPDF for wSRPM with
8(s — |Ex — Ex—1]), one gets the level spacing distribution

Pusrpm(s) = Y _ ;P (s), (12)
which is a linear combination of the level spacing distribu-
tions Pf "(s). An analogous expression holds for the number

variance
Z ¢

which stems from the formula X?(L) =L — fOL dE(L —
E)(1 — Ry(E)) and the fact that the two-level correlation
function R,(E) for wSRPM is a linear combination of two-
level functions of SRPMs Pf: "

WSRPM(L) ht (L), (13)

V. LEVEL SPACING DISTRIBUTION AND NUMBER
VARIANCE ACROSS THE MBL CROSSOVER

The wSRPM model, defined by (11) depends on a large
number of parameters, one needs to specify JPDFs of the
SRPMs 77;3' which contribute to the full JPDF of the gener-
alized model Py,srpm and find appropriate weight coefficients
¢;. To complete this task, we utilize the P(rg) distributions
which encode the intersample randomness across the MBL
transition. Distributions of rg for individual SRPMs Ph’(rs)

are Gaussian centered around 7 which depends on /; and
Bi parameters. The corresgondmg distribution for wSRPM
reads Pysrpm(rs) = D, ¢ (rg) and the set of parameters {;,
Bi, c;} is fixed by the requlrement that Pysrpm(7s) reproduces
the P(rg) distribution for a given physical model [in this case,
XXZ spin chain (2)] most faithfully. To fulfill the requirement
ina robust way, we select a sequence of coefficients {(5;, ;)}

with r/3 covering the interval rg € [0.386,0.531] possibly
uniformly, i.e., we choose
(ﬁ, b, i €0, 10,
(Bi hi) = { (2. D), i €[11,30], (14)
(1,[—30), i € [31, 30+hmax]’

where hp,x specifies the maximal range of interactions in
the contributing SRPMs. The chosen set of coefficients (14)
determines the family of wSRPM that can be obtained by
various choices of the weight coefficients {c;}. One way of
finding the weight coefficients {c;} would be to choose a
number of points r; and solve the linear system of equations
P(rs = 1j) = Pysrem(rs = r;) for the {¢;} coefficients given
that the function P(rs = r;) as well as P;,'f(rs) are known. If
the number of the points 7; is equal to number of coefficients
¢;, the solution is unique. Unfortunately, this linear problem is
badly conditioned, small changes of positions of r; modify
drastically the solution {¢;}. In particular, it may happen
that certain coefficient ¢, is large and positive whereas the
next one . is large negative which illustrates that further
constraints should be imposed on {c;}. Namely, the weight co-
efficients must be positive ¢; > 0 and the differences between
subsequent ¢; should not be too large. This leads us to a fitting
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FIG. 5. The fit of P(rg) distributions. Distributions P(rg) of the
sample-averaged gap ratio ry for the XXZ spin chain Eq. (2) are
denoted by markers. The corresponding wSRPM fits are denoted
with solid lines. Gray dashed lines correspond to P(rs) for GOE and
PS center, respectively, around 7gog = 0.531 and 7ps = 0.386.

procedure which determines the weight coefficients {c;} by
minimizing

fmax M

K= (e —a) + f (Pysrem(rs) — P(rs))*drs.
im0 " "
(15)

The term sz 1(Cl+1 —¢;)? assures the ° ‘continuity” of c;
coefficients, the condltlon ¢; > 0 becomes a constraint of the
minimization procedure. The constant m is taken as 107*
although changing it by a factor of 5 only mildly affects the
results. Finally, the minimization of (15) does not resolve
accurately SRPMs with large & as the spacing between sub-
sequent 7@ decreases drastically, so that we take iy =5
in (14).

Determining the constitutive SRPMs by the choosing the
set {(B;, h;)} according to (14) and specifying the method of
obtaining the weight coefficients {c;}, we defined a method
of finding wSRPM which reproduces intersample randomness
and can be used across the ergodic-MBL crossover.

A. Level statistics as a function of disorder strength

The distributions Pysrpm(7s) found for the XXZ spin chain
for varying disorder strength W for system of size K = 16 are
presented in Fig. 5. Distributions P(rg) are indeed recovered
in the whole crossover region. The distribution for W = 1.5,
which is already very close to the GOE regime, is modeled by
a single SRPM with h = 12 and 8 = 1.

Level statistics predicted by the wSRPM model together
with XXZ spin chain (2) data across the MBL transition are
presented in Fig. 6. We have accumulated data for n = 2000
disorder realizations for each disorder strength W and we have
set the mean level spacing to unity (details described in the
Sec. VII). The solid lines which denote the predictions of
wSRPMs match with a very good accuracy both the bulks and
the tails of level spacing distributions for disorder strengths
W corresponding to the whole regime intermediate between
GOE and PS level statistics. In particular, the tails of P(s)
for W = 1.9, 2.1 are visibly bent upwards—this is a clear
manifestation that SRPMs which account for more localized
rare events must be included in the wSRPM. The number vari-
ances %%(L) predicted by the wSRPM are again reproducing

107'E
107% % ay
1072; \\\\ s = 33~
1074 . k) . . s
2 3 4 5 6 7 8
(L) ;

w
=)

[N}
(=)

—_
o

0

FIG. 6. (Top) Level spacing distributions P(s) as a function of
disorder strength W in XXZ spin chain (2) of size K = 16 are
denoted by markers, wSRPM results denoted by solid lines and gray
dashed lines denote the level spacing distributions in the limiting
GOE and PS cases. (Middle) Same as above, but vertical axis in
logarithmic scale to facilitate comparison between tails of level
spacing distributions. (Bottom) Number variance $?(L) for XXZ
spin chain (dashed lines with markers) and results for wSRPM
model (solid lines). Gray dashed lines correspond to level spacing
distribution or number variance for GOE and PS.

the data for XXZ spin chain (2) with a very good precision.
The number variance predicted by fitting of a single SRPM
presented in Fig. 3 was underestimating the result for W = 1.9
and it is the contribution from other SRPMs included in the
wSRPM which ensures the agreement in the number variance.

Specific values of the weight coefficients are presented
in Fig. 7. We also compare the mean gap ratio 7 with the
prediction of WSRPM Fysrpm = D _; c,rh‘ in Table I showing
the agreement at the level of 0.5%. In addition, we also
collate spectral comprehensibilities. Predictions of wSRPM
Xwsrem = _; i/ (h;B; + 1) agree with spectral comprehensi-
bilities for XXZ spin chain obtained from quadratic fit to the
number variance X%(L) for XXZ spin chain in the interval
L € [10, 70] (see also Sec. VII) up to 10%.

B. Level statistics as a function of system size K

We have thus demonstrated that by constructing
appropriate WSRPMs one can model flow of level statistics
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FIG. 7. Coefficients c; for the wSRPM for XXZ spin chain across
the ergodic-MBL crossover.

across the ergodic-MBL crossover for XXZ spin chain at
given system size. In the following section, we demonstrate
how the level statistics evolve with system size K for fixed
disorder strength W.

A quick glance at Table II reveals the average gap ratio
7 tends towards 7gog and 7ps values with increasing system
size K at disorder strengths close either to the ergodic regime
(W = 2.1) or to the MBL phase (W = 4.0). The system size
dependence is much stronger in the former case than in the
latter as it is also visible in Fig. 8. The evolution of level
spacing distribution P(s) and number variance ©%(L) with
increasing system size is presented in Fig. 9. The level spacing
and the number variance change with increasing size as the
gap ratio suggest flowing either to GOE or to PS limit.
The wSRPM determined by the requirement of reproducing
the P(rg) distributions shown in Fig. 8 captures accurately
level spacing distribution as well as the number variance for
the considered system sizes. The evolution of parameters of
the model with increasing system size is presented in Fig. 10
showing clearly that the weight of SRPMs closer to the GOE
(those with larger i) increases with the growing system size.
Analogous (albeit weaker) dependence is observed also close
to the MBL regime (W = 4.0).

C. Flow of level statistics in the ergodic-MBL crossover

We have shown that wSRPM accurately describes level
statistics of disordered XXZ spin chain across the whole
ergodic to MBL crossover. The agreement is remarkably good
even for long-range spectral correlations as shown by the
number variance X2(L). This leads us to conclusion that

TABLE 1. Values of the mean gap ratio 7 and spectral com-
pressibility x for XXZ spin chain are compared with predictions of
wSRPM model: FWSRPM and XWSRPM -

w r X TwSRPM XwSRPM
1.5 0.5306 0.0975 0.5282 0.078
1.9 0.5219 0.259 0.5189 0.238
2.1 0.5092 0.358 0.5074 0.338
2.5 0.4720 0.523 0.4719 0.562
2.9 0.4390 0.638 0.4384 0.711
3.5 0.4107 0.774 0.4101 0.850
4.5 0.3938 0.857 0.3941 0.929

TABLE II. Values of the mean gap ratio 7 and spectral com-
pressibility x for XXZ spin chain are compared with predictions of
wSRPM model: FWSRPM and XWSRPM -

v X TwSRPM XwSRPM
W =21
K=14 0.4956 0.392 0.4946 0.432
K =16 0.5092 0.354 0.5074 0.338
K =18 0.5221 0.259 0.5193 0.231
W =40
K=14 0.4021 0.743 0.4024 0.888
K =16 0.3996 0.805 0.3992 0.905
K =18 0.3989 0.849 0.3981 0910

the effective interactions between eigenvalues in the MBL
crossover are accurately grasped by level correlations of wS-
RPM.

The picture of the flow of level statistics from GOE to PS
in the MBL transition which emerges is the following. In the
ergodic phase the range of interactions between eigenvalues
tends to infinity, 7 = max{h;} — oo, and the level statistics
reduces to GOE case. As the disorder strength increases, the
range of interactions between eigenvalues /1 declines to a
finite value, level spacing distribution acquires an exponential
tail and a finite spectral compressibility x appears as the
number variance grows linearly X?(L) o< xL. Upon further
increase of the disorder strength, the range of interactions
h decreases further. A larger contribution of level statistics
with short-range interactions appears as it is visible in tails of
level spacing distributions and in the enhancement of spectral
compressibility x. As the MBL phase is approached the
interactions become local # = 1 and parameter 8 = max{p;}
starts to flow from 8 = 1 to 8 = 0 in the MBL phase similarly
as in the second stage of the flow described in Ref. [35].
This final stage of the flow is also accompanied by rare
inclusions of systems which have nearly ergodic properties as
it is visible in the P(rg) distribution in Fig. 5. The presence of
this contribution also slightly diminishes the number variance.

Level statistics on the ergodic side of crossover flow
towards GOE limit for growing system size. Similarly, for
disorder strength W 2> 4.0 system approaches the PS limit
as its size increases. The transition becomes sharper and the

P(Tlégl: m K=14, W=21
: o K=14, W=4.0

@ K=16, W=2.1

L * K=16, W=4.0

: v K=18, W=21

r A K=18, W=4.0

107t

FIG. 8. The fit of P(rg) distributions. Distributions P(rg) of the
sample-averaged gap ratio rg for the XXZ spin chain Eq. (2) are
denoted by markers. The corresponding wSRPM fits are denoted
with solid lines. Gray dashed lines correspond to P(rs) for GOE and
PS center, respectively, around 7gor = 0.531 and 7ps = 0.386.
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v W=21 K=18
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FIG. 9. (Top) Level spacing distributions P(s) in XXZ spin
chain (2) for varying system size K are denoted by markers, wSRPM
results denoted by solid lines and gray dashed lines denote the level
spacing distributions in the limiting GOE and PS cases. (Middle)
Same as above, but vertical axis in logarithmic scale to facilitate
comparison between tails of level spacing distributions. (Bottom)
Number variance %2(L) for XXZ spin chain (dashed lines with
markers) and results for wSRPM model (solid lines). Gray dashed
lines correspond to level spacing distribution or number variance for
GOE and PS.

range of disorder strengths W for which a wSRPM with
more than a single nonzero coefficient shrinks with increasing
system size. We speculate that in the K — oo limit only at the
critical disorder strength W¢ the level statistics is neither GOE

&) r ——K=14, W=2.1
0.2r —e—K=14, W=4.0
——K=16, W=2.1
ol —+—K=16. W=4.0
——K=18 W=21

——K=18, W=4.0

0.0 T T 1 T

1

FIG. 10. Coefficients ¢; for the wSRPM for XXZ spin chain for
varying system size on the two sides of the ergodic-MBL crossover.

SHL) — wSRPM
50+ K=14
r—e— K=16

30r —— K=18 .-~

-

10F ===

40 1 60 80

FIG. 11. Critical level statistics for XXZ spin chain with random
uniform disorder. Dashed lines correspond to the GOE and Poisson
cases.

nor PS. Candidate for such critical level statistics for the MBL
transition is discussed in Sec. V D.

In conclusion, the wSRPM allows to model the level
statistics in the XXZ spin chain in the whole MBL crossover.
The level statistics are reproduced with a nearly perfect agree-
ment on the level of ten level spacings. Slight discrepancies
associated with long-range spectral correlations are discussed
in Sec. VII. Now, we proceed to discussion of the critical
level statistics in Sec. V D to further demonstrate that wSRPM
describes also statistics observed for other systems that reveal
MBL transition in Sec. VI.

D. Critical level statistics in MBL transition

We assume that the critical level statistics in MBL tran-
sition can be extracted from data for a system of size K for
disorder strength Wx that maximizes the intersample variance
Vs, e.g. Wx = 2.7 for K = 16. The finite size analysis assures
that in the thermodynamic limit K — oco: Wy — W = 3.5(1)
(as discussed in Sec. II).

As the system size increases the statistics on the ergodic
(MBL) side of crossover tend towards GOE (Poisson) limit,
the width of the crossover diminishes. The critical level
statistics which we conjecture to be relevant exactly at the
MBL transition in large system size limit is presented in
Fig. 11. The obtained wSRPM contains SRPMs with long-
range interactions h > 1 (nonzero weights ¢; with i > 30)
together with dominating contribution of models with local
interactions and § < 1. Large number of contributing SRPMs
allows to accurately reproduce the P(rs) distribution (Fig. 12).
Moreover, it is vital to faithfully reproduce the number vari-
ance. The values of spectral compressibility x defined by the
linear large L behavior of the number variance »2(L) < xL
together with the average gap ratios 7 are shown in Table III.
This quantities are in good agreement with the predictions of
the wSRPM 7ysrpm and xwsrpm. The data suggest that the
remaining small deviation in the spectral compressibility y is
probably a finite size effect.
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FIG. 12. (a) The P(rg) distribution for the critical statistics in
XXZ spin chain along with wSRPM and P(rg) for SRPM. (b) The
¢; coefficients of WSRPM shown in Fig. 11.

Level spacing distribution P4(s) in the Anderson transi-
tion [20] combines level repulsion at small s characteristic
for GOE and an exponential tail of Poisson level statistics,
the critical statistics shown in Fig. 11 also possess the two
features. However, the large intersample randomness encoded
in broad P(rg) distribution is a crucial property of the critical
level statistics in MBL transition, whereas it does not play a
role in the Anderson transition in which the P, (rg) distribution
has a Gaussian shape the same width as in the GOE and
Poisson limits.

VI. UNIVERSALITY

The wSRPM model has so far been used to describe
level statistics in the standard model of MBL—the XXZ spin
chain (2). It has already been noted in Ref. [58] that there
are differences in level statistics across the MBL transition
in systems of hard-core bosons and fermions. In this section,
we demonstrate that wSRPM can faithfully reproduce level
statistics in ergodic to MBL crossover in a disordered Bose-
Hubbard model [47] as well as in disordered Fermi-Hubbard
model [42].

The system of disordered bosons is described by the Bose-
Hubbard Hamiltonian

Hy=-1Y aja;+ % D wuhy— 1)+ Y iy, (16)
(i.) i i

where aj and g; are bosonic creation and annihilation oper-
ators, respectively, the tunneling amplitude J =1 sets the
energy scale, U is interaction strength, and the chemical

TABLE III. The average gap ratio 7 and spectral compressibility
x for the XXZ spin chain at disorder strength which corresponds
to W at in the thermodynamic limit K — oo. For comparison, the
predictions of WSRPM ry,srpm and xwsrem are displayed.

K W T X
14 2.62 0.4528(4) 0.545(9)
16 2.7 0.4537(5) 0.587(5)
18 2.8 0.4569(7) 0.605(4)
TwSRPM XwSRPM
0.4530 0.639

potential w; is distributed uniformly in an interval [—W; W1].
This model have been shown to be MBL [47] above a
critical disorder strength Wy, which depends on the interaction
strength U. The Hamiltonian for disordered fermions reads

HF() =—J Z (ézaéiﬂ.g +HC) +U Zn,ﬂm—i— Z /Lifli,
io=1,{ i i

17)
where cchi are fermionic creation and annihilation operators,
respectively; J = 1 and U are tunneling and interaction am-
plitudes and u; € [—W; W] is uncorrelated disorder. To avoid
integrability in the absence of disorder it is sufficient [42] to

add the next-to-nearest neighbor tunneling terms

Hy=—J'Y (] ,¢,,,+Hc) (18)

and an additional symmetry breaking term
Hsp = hg(nip — niy) + pup(ngs +npy). (19)

Transition between GOE and PS statistics for the system with
the full Hamiltonian

Hp = Hpo + H| + Hps (20)

has been observed in Ref. [42].

Level statistics as a function of disorder strength in the
bosonic (16) and fermionic (20) models together with wS-
RPM fits are presented in Fig. 13. Similarly as in the case
of XXZ spin chain, the level spacing distributions P(s) are
characterized by exponential tails (which are also bending
upwards for large s), the number variance %2(L) is growing
linearly at large L similarly as in the case of disordered
XXZ chain. It seems that these are universal features of level
statistics in ergodic to MBL crossover in models with short-
range interactions. Such systems host an extensive number
of LIOMs. Presumably, the observed common features of
level statistics across the MBL crossover are associated with
the way in which the LIOMs get delocalized as the disorder
strength decreases.

Predictions of wSRPM reproducing appropriate P(rs) dis-
tributions for both systems are denoted by solid lines in
Fig. 13. In the case of the fermionic system, the method
of determining the wSRPM model was exactly the same
as for the XXZ spin chain, whereas for bosons we have
also included SRPM with 8 = 1 and /& = 25 (it has Fgfls =
0.5302 which can be compared with r’gj = (0.5262). For the
smallest disorder strengths W = 8.5 (W = 4.5) for bosons
(fermions), a single SRPM with 7 = 12 (h = 13) was fitted.
The bulks of level spacing distributions as well as the tails
are reproduced reasonably accurately by the wSRPM across
the whole MBL crossover. The wSRPM prediction for the
number variance ¥.?(L) is compatible with data for disordered
Fermi-Hubbard model. However, the number variance is sig-
nificantly 20%-30% overestimated for the disordered Bose-
Hubbard model at W = 10 and 12. Inspecting closely the
P(rs) distributions in Fig. 14, we can clearly see abundance
of disordered realizations with rg 2 0.57 for W = 10 and 12
such that P(rg) is above the GOE distribution. Precisely this
abundance lead us to consider also the 8 =1 and h = 25
SRPM in the fits for bosonic system. While it diminishes
the deviation of the number variance, it is clearly insufficient

104205-10



LEVEL STATISTICS ACROSS THE MANY-BODY ...

PHYSICAL REVIEW B 99, 104205 (2019)

P(s)f °  W=85
0.75F - v W=10
N * W=12
050k /F TN \ = W=D
% § A W=25

0.25[ RN

1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

CF TT TT o et k. desken|
—3--—¢-o-9-1

P(s) °  W=45
0.75 S voW=85
X X e W=I0
0.50 20N N = W=125
’ / SN \ A W=15
0.25 TR
1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
P(s) S
107'E
I \\ vee ~~\~“~~~
1072 N ST N
N\ AR R
L \ v *e ~~.
i N, 9 Vy L0y ~~

FIG. 13. (Left) Level spacing distribution P(s) (in lin-lin and in lin-log scales) together with number variance £?(L) during MBL transition
in disordered Bose-Hubbard model (16). Results for N = 12 bosons on K = 8 lattice sites, interaction amplitude U = 1 are denoted by markers,
solid lines show wSRPM model fits. (Right) Level statistics for the Fermi-Hubbard model Hr. Results for Ny = 3 = N, fermions on K = 12
lattice sites with interaction strength U = 2 and up = hz = 0.1, J/ = 0.5 are denoted by markers, solid lines correspond to wSRPM model

predictions.

to yield correct spectral compressibility. This demonstrates
model specific long-range correlations between eigenvalues
that cannot be grasped straightforwardly by wSRPM.

Apart from the model specific details, the exponential tails
of level spacing distributions and the finite spectral compress-
ibility that appear already deeply in the metallic phase were
observed for the XXZ spin chain as well as in the bosonic and
fermionic systems. The wSRPM model is able to grasp all
of those features which provides an argument in favor of its
generality. Moreover, distinct numbers of rare events occur in
various systems during MBL transition which reveals itself in
dissimilar correspondences between the bulk of level spacing
distribution and its tail as well as the number variance. In
general, different systems are characterized by different inter-

P(rs)t
10'e
F o W=85
- voow=l10
10V ¢ W=12
E A ° .
E al v L] W=15
Eot o A W=25
1071 I L 2 4

FIG. 14. The fit of P(rs) distributions. Data for bosonic system

(16) are denoted with markers, solid lines show wSRPM fits.

sample randomness during the MBL transition—compare for
instance the shape of P(rg) distributions displayed in Fig. 14
with data for the XXZ spin chain in Fig. 5. This demonstrates
that an accurate model of level statistics must be flexible
enough to reproduce various types of intersample randomness
across the MBL crossover; this necessitates an introduction of
a weighted model like wSRPM.

VII. LONG-RANGE SPECTRAL CORRELATIONS

The number variance $2(L) at large L reflects correlations
between energy levels which lie far apart in the spectrum of
a system. Such long-range correlations between eigenvalues
are strong in the GOE ensemble, resulting in the so called
spectral rigidity which is apparent in the asymptotic behavior
of the number variance EéOE(L) — In(L) at L > 1. The
spectral rigidity of GOE is associated with the fact that the
logarithmic interactions act between all pairs of eigenvalues
in the JPDF for GOE (7). And it is the spectral rigidity of §-
Gaussian model which causes the large discrepancy between
its prediction and the number variance for XXZ spin chain in
Fig. 3. On the other hand, the SRPMs describe interactions
only among a finite number % of neighboring eigenvalues
which results in the spectral compressibility of those models
EéOE(L) — xL at L> 1, with 0 < x < 1. The resulting
spectral compressibility of the wSRPM model allows to grasp
the linear behavior of number variance in the MBL crossover.
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The similar behavior can be also obtained with wPLRBM as
presented in the preceding section.

To be able to compare statistical properties of eigenvalues
from different parts of spectra of various systems, one has to
perform the unfolding of energy levels [11]—the procedure
of setting mean level spacing to unity. Unfortunately, the
number variance %2(L) is very sensitive to details of the
unfolding [59], which has already been a source of discrep-
ancies in descriptions of level statistics in the MBL transition
[35,36]. Consider a set of eigenvalues {E;} ordered in an
ascending manner. During the unfolding, a level staircase
function o (E) = Zi O(E — E)) is separated into smooth and
fluctuating parts 6(E) = o (E) + o (E) and the eigenvalues
are mapped via

E,' —> € = E(El) (21)

The difficulty of unfolding lies in an ambiguity of the defi-
nition of the smooth part o (E) of the staircase function. The
most common way is to fit the staircase function o (E) for
each disorder realization with a polynomial of a small degree
which determines the smooth part o (E).

In our case, a set of n =400 consecutive eigenvalues is
gathered and the resulting level staircase is fitted with a
straight line which defines the smooth part o(E) used in
the unfolding of energy levels. For each disorder realization,
seven nonoverlapping sets of n = 400 eigenvalues from the
middle of spectrum are taken—effectively employing ~20%
of the spectrum to the analysis as the matrix size for K = 16
is equal to 12870. The finite size n of the set of eigenvalues
introduces a correction —a,L?/n to the number variance [60].
Carrying out the unfolding with » = 50, 100, 200, 400, 800,
we verify that it is indeed the case. We perform a quadratic fit
to ©2(L) in the interval L € [10, 70] and obtain the coefficient
a, which is weakly dependent on the chosen L interval. There-
fore, in order to eliminate the quadratic correction and thus to
get rid of the finite n effects, we subtract the —a,L? /n term
from the number variance data. Let us note that unfolding with
finite number n of energy levels can have two consequences.
For eigenvalues that are strongly correlated at large distances
(e.g., GOE), it destroys level correlations at approximately
n level spacings meaning that at this ranges the eigenvalues
become uncorrelated. Hence, the number variance becomes
overestimated at L &~ n. The converse is true for uncorrelated
energy levels—unfolding based on n energy levels introduces
correlations between them at a certain scale—and the number
variance is underestimated. We have checked that our unfold-
ing procedure (together with the —a,L?/n term subtraction)
allows us to get correct number variances in the two limiting
cases of GOE and PS statistics up to L ~ 100.

The number variances for the XXZ spin chain (2) at various
disorder strengths W together with the wSRPM results from
Sec. V A are presented in Fig. 15. Nearly perfect agreement
between the XXZ spin chain data and the predictions of wS-
RPM visible in Fig. 6 for L € [0, 20] is lost. Small deviations
from the linear behavior of the number variance predicted
by wSRPM appear at larger scales which was also indicated
by the slight discrepancies between spectral compressibility
x of the data and the prediction of wSRPM. There are two
distinct regimes. For metallic systems with disorder strengths
W < 2.1, the number variance obtained from the wSRPM is

Z4(L)
50
40
30
2

10

FIG. 15. Long-range spectral correlations visible in large L be-
havior of the number variance X?(L) for XXZ spin chain (2) during
the MBL transition. The dashed lines denote predictions of the
wSRPMs with parameters from Table I.

smaller than the result for XXZ spin chain. This indicates that
there exists a regime (for L 2 20) where the number variance
grows faster than linearly which was interpreted in Ref. [36] as
a signature of anomalous Thouless energy in the system [61].
We indicate below that this behavior of the number variance
for large L has to be examined with an uttermost caution. The
second regime arises as the disorder strength increases above
W = 2.5. Then, the number variance predicted by wSRPM
slightly overestimates the number variance for the XXZ spin
chain. As we have shown in Fig. 9. this effect diminishes as
one changes the system size from K = 14 through K = 16 to
K = 18 and thus it is likely a finite size effect. However, we
cannot completely exclude the possibility that there are some
remaining long-range correlations between eigenvalues in the
system which are not grasped within the wSRPM.

The simple form of JPDF of wSRPM allows us to get
further insight into long-range spectral correlations of system
in the MBL crossover. The situation in which wSRPM accu-
rately reproduces level statistics up to 10-20 level spacings
but underestimates the number variance for L 2> 20 is at
first sight paradoxical. The wSRPM incorporates interactions
between energy levels only at a finite range & = max{A;}. In
addition, the weaker the correlation between eigenvalues sep-
arated by a given distance the bigger is the number variance at
L corresponding to this distance. How it is, therefore, possible
that wSRPM grasps faithfully the level statistics at the local
scale but predicts stronger correlations at larger scales as
compared to the data for the XXZ spin chain while at the
same time it does not assume presence of any interactions
between energy levels beyond the range 4? It turns out that
fluctuations of density of eigenvalues on scales of tens level
spacings increase the number variance at large L. This is
precisely the moment in which the unfolding enters the scene
as it is the way in which the o (E) is defined which determines
whether the density fluctuations are incorporated into o (E)
resulting in number variance %2(L) growing linearly with L
(or, conversely, they are not incorporated and then X%(L) in-
creases faster than linearly for large L). The work [36] reports
that the number variance grows according to a power law
¥2(L) o< LY with y > 1 for large L for the XXZ spin chain
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FIG. 16. The number variance X?(L) for XXZ spin chain (2) of
size K = 18 for W = 1.5. The dashed line show result for local linear
unfolding with n = 400, the solid line for unfolding based on mean
density of states [36] with n = 6000. The number variance >2(L)
obtained after introducing of fluctuations of density of eigenvalues
with parameter a are denoted with lines with markers.

(2) deep in the metallic regime where the exponent y acquires
values up to y & 1.4. The number variance obtained by us for
W = 1.9 has clearly some region in which it increases faster
than linearly, but such a power-law growth is not observed by
us. This discrepancy has its root in the unfolding. Unfolding
employed in Ref. [36] relies on assumption that the shape
of mean density of states obtained for the system at given
disorder strength can be used (after appropriate linear trans-
formations) to unfold large portions of spectrum of the sys-
tem taking n =~ 6000 consecutive energy levels for K = 18.
The fluctuations of density of eigenvalues on the scales of tens
or hundreds of eigenvalues which are different for different
disorder realizations are not incorporated in the o (£) as it
is determined by the mean density of states in which such
fluctuations are averaged out.

Figure 16 compares the number variances obtained after
the local linear unfolding with n = 400 consecutive eigenval-
ues and after the unfolding of Ref. [36]. The results agree
up to L ~ 15. In order to show that the difference between
the results stems from the density fluctuations, we introduce
a particular density modulation to the data from the local
linear unfolding. Namely, the unfolding is modified so that
the eigenvalues are mapped via

E; — € =0(E) + a(E; — Ec)*, (22)

where E¢ lies in the middle of the energy interval which is
unfolded. The a(E; — E¢)? term mimics the density fluctua-
tions which were not incorporated into o (E), for a = 0 (22)
reduces to the local linear unfolding (21). Such a density
modulation does not alter P(s) at all, however, it modifies
the number variance exactly in the manner which allows us to
reproduce the result of Ref. [36] and showing that the density
fluctuations are the mechanism which causes the power-law
growth of the number variance.

In conclusion, the behavior of the number variance 2(L)
suggests that long-range spectral correlations might be present
in the level statistics of XXZ spin chain during MBL transi-
tion. This feature of MBL transition lies beyond the scope of
wSRPM, however, as we demonstrated by examining bosonic
and fermionic systems it is model dependent. It is not clear

whether the unfolding employed in Ref. [36] is justified. As
we have indicated, it does not take into account variations of
density of eigenvalues at scales of tens and hundreds of level
spacings for a given disorder realization. Let us emphasize
once again that the situation of localization of an interacting
system differs starkly from the usual RMT where a random
matrix depends on number of random entries which scales as
square of its size whereas the number of random entries in the
Hamiltonian of the XXZ spin chain scales only as logarithm of
the size of the Hilbert space of the system. Therefore one may
expect that while the density fluctuations average out for RMT
and using Wigner’s semicircle to unfold GOE is a good idea
it may not be the case for the many body quantum systems
which undergo MBL transition.

VIII. CONCLUSIONS AND BEYOND

Analyzing the gap ratios of systems in the crossover be-
tween ergodic and many-body localized regimes we have
shown that a complete information about inter- and intrasam-
ple randomness can be obtained from the r, variables. Dis-
tribution P(rg) of the sample averaged gap ratio rg provides
a suggestive illustration of Griffiths regions in the case of
random disorder while it shows absence of such rare events
in systems with quasiperiodic disorder. The proposed inter-
and intrasample variances Vs and V; provide a straightforward
method to quantify inter- and intrasample randomness. While
our analysis provides further insights into role played by
Griffiths regions in MBL transition, it is conceptually and
computationally (involves only eigenvalues) simple and there-
fore can be straightforwardly employed in studies of other
systems where a transition between integrable and RMT-like
regimes occurs.

Examining the bulk and the tail of level spacing distri-
bution together with the number variance, we have demon-
strated that the proposed models of spectral statistics in MBL
crossover [35,36,38,39] grasp level statistics accurately only
at the level of few of level spacings. To reproduce broad
distributions of the sample averaged gap ratio rg in the MBL
transition, we have introducted the wSRPM that is a statistical
mixture of the well known family of short-range plasma
models. The wSRPM describes faithfully the flow of level
statistics in the whole ergodic to MBL crossover. According to
wSRPM the correlations between eigenvalues are present only
at a finite range 4. In the ergodic phase the range i diverges
resulting in GOE statistics and as the system flows towards
MBL phase the range of correlations diminishes. At a certain
point, the interactions become local (h = 1), finally in the
vicinity of MBL phase the level repulsion vanishes (8 — 0)
resulting in the Poisson statistics. The wSRPM grasps uni-
versal features of level statistics across MBL transition in a
variety of spin, bosonic and fermionic systems with inter-
actions and random disorder. The assumption that there are
no correlations between eigenvalues at ranges larger than &
predicts the finite spectral compressibility x in the transition.
The latter seems to be approximately true for the studied
systems albeit small deviations from the linear behavior of
the number variance have been noticed. This may be either
an artifact of the unfolding procedure or could also stem from
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TABLE IV. Coefficients, h = 2, P(n, 5) = exp(—3s)s>" Z,‘ w;s’.

n=20 n=1 n=2 n=3 n=4
w 2.4773 2.50542 0.325782 0.0160653 1.9203 x 10~
wy 6.06811 3.0685 0.243833 6.51294 x 1073 8.2295 x 107
w3 3.71594 0.751625 4.0723 x 1072 6.0483 x 107 8.2297 x 10~¢

weak long-range interactions between energy levels which are
model and system size dependent.

We also considered a weighted ensemble of power law
banded random matrices—see Appendix B. An appropriate
mixture of PLBRM (again necessitated by a broad distribution
of gap ratio in physical samples) seems to be at least com-
petitive with wSRPM leading to small deviations of the fitted
model from the data for XXZ spin chain. Both approaches
have their advantages. While for SRPMs the eigenvalues may
be generated by brute force Monte Carlo integration of the
JPDE, a softer semi-analytic approach, working at certain
range of eigenvalues interaction, 4, is possible following the
path shown by Bogomolny and coworkers [55] as shown in
Appendix A. It provides expressions for the level spacing
distribution P(s) and, more importantly, gives analytical for-
mulas for asymptotic behavior of the number variance (L)
as well as for the tails of P(s). Moreover, the wSRPM gives
a concrete microscopic description of correlations between
eigenvalues across the whole MBL crossover and allows us
to speculate how the level statistics evolve in the limit of large
system sizes.

On the other hand that approach provides us with no clue
on the eigenvectors behavior. On the contrary, PLBRM model
provides access to both eigenvalues and eigenvectors by a
direct (although costly) diagonalization of a large number of
matrices from the ensemble. The drawback of this approach is
that there are no analytical results for this model at finite N or
© # 1 so a clear picture of correlations between eigenvalues
is not available.

Finally, it is also interesting to note that the MBL transition
for the quasiperiodic disorder case cannot be described by
the proposed weighted ensembles. It supports the claim of
Ref. [33] that the transitions for RD and QPD are of differ-
ent universality classes. The ensemble that reproduces level
statistics for QPD in MBL transition is yet to be identified.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR
SHORT-RANGE PLASMA MODEL

The following quantities are needed in order to construct
wSRPM: level spacing distributions Pf (s), number variances
Eé »(L), the sample gap ratio distribution Pf (rs) of the indi-
vidual SRPMs used in the wSRPM. Semianalytic expression
for most of those quantities have been given in Ref. [55].
We comment here on how they can be used in the context of
wSRPM.

Let us start with 2~ = 1. The distribution of level spacing
between nth neighboring eigenvalues reads

Pﬁ (n S) _ (5 + 1)(n+1)(/3+1)
h=t2 T((B+Dn+1))

where B € [0, 1], for n = O this distribution reduces to the
usual level spacing distributions. For n > 0, formula (Al)
can be used to obtain the number variance according to the
following general expression:

L 00
>2(L) =L—2/ ds(L—s)(l — ZP(n, s)). (A2)
0 n=0

From our Monte Carlo evaluation of JPDF (8), we know
that the Pf (rs) distributions (for range 4 and S relevant in
applications of our wSRPM) are Gaussian functions, local-
ized around certain values 7,‘? with standard deviation o =
0.01557, which changes only very slightly for various 4 and .

Therefore, instead of deriving the full Pf=1(r5) distribution,

P+ g (B+Ds

(AD)

we simply use the distribution of gap ratio to calculate F}ff:l

TABLE V. Coefficients, h = 3, P(n, s) = exp(—4s)s* "% 3~ w5/, where §; ; denotes the Kronecker delta.

n=20 n=1 n=72 n=3 n=4
wy 2.13422 1.13398 0.14101 3.03041 x 10~° 1.7921 x 1073
wy 7.81963 3.63343 0.29749 4.48832 x 1073 2.0107 x 1073
w3 11.6945 5.01886 0.26416 2.81378 x 1073 9.7956 x 10~°
Wy 9.07429 3.71122 0.12338 9.58731 x 10~ 2.6381 x 107°
ws 3.68554 1.50368 3.2011 x 1072 1.87245 x 10~* 4.1257 x 1077
we 0.62587 0.310017 4.455 x10~3 2.00989 x 1073 3.5835 x 107%
wy 0 2.59412 x 1072 2.6414 x 10~ 9.37094 x 1077 1.3637 x 107°
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TABLE VI. Coefficients, i = 4, P(n, 5) = exp(—5s5)s" V9272 37 a5/

n=20 n=1 n=2 n=3

w) 1.9869 0.810475 0.0483296 7.29136 x 1074

wy 9.44665 3.61582 0.190586 2.12001 x 1073

w3 20.1982 7.54195 0.351477 2.85649 x 1073

Wy 25.6905 9.67193 0.399671 2.35667 x 1073

ws 21.5383 8.44298 0.310511 1.32441 x 1073

We 12.39 5.24733 0.172672 5.34180 x 10~

wy 4.90293 2.35889 7.01559 x 1072 1.58784 x 10~

wg 1.28897 0.763259 2.0934 x 1072 3.51389 x 1073

Wo 0.204419 0.17333 4.55485 x 1073 5.76574 x 10°

Wi 0.0148948 2.61995 x 1072 7.06631 x 10~* 6.86517 x 1077

wy 0 2.36573 x 1073 7.44424 x 1073 5.64602 x 1078

wi2 0 9.63045 x 1073 4.79282 x 107° 2.87566 x 107°

w3 0 0 1.42564 x 1077 6.85001 x 107!
and use the Gaussian approximation for the full distribution for function ¥;(&1, ..., &—1). The equation can be solved by
szl(rs). The gap ratio distribution szl (7) reads [62] a polynomial ansatz

PP (1) = TR+ (B+2)  2rF (A3) Vi, ... 6n-1)
BT (B4 ITHB D) (1 + )2 =
_ L i «ln Ip—1
from which we get 7:_, as the first moment of P’ (r) iIZOiaZO. N l_};o Giiz-ins 8187 - Epl1r (A3)

distribution.

For h > 1, the only interesting case for us is 8 = 1. Then,
the level spacing distribution is given by (9). In order to
determine the polynomial W (s) as well as the distributions
Pf (n,s) for h > 1 and n > 0, one needs to solve the integral
equation [55]

/0 dgne e, (Ey +Em1) . Gt EDY L E)
=71, - Enmr)s (A4)

which reduces (A4) to an eigenproblem for a matrix of dimen-
sion Dy, = ]_[Z;} ir. Solving the eigenproblem, the eigenfunc-
tions v¥;(&1, ..., &,—1) can be used to find Pf(n, s)yforh >1
and n > 0 as well as P,’f (r) which is then used to determine
P,f (rs) as a Gaussian function with standard deviation o =
0.01557 centered around 75 . The level spacing distribution
is determined as Pf(s) = P,f(n = 0, 5), whereas Pf (n=20,5s)
for 5 > n > 0 are used to find the number variance Zéyh(L)

TABLE VII. Coefficients, h = 5, P(n, s) = exp(—6s)s""2=2 37 ;5.

n=20 n=1 n=2 n=3
w, 1.90607 0.6725112 2.816938 x 1072 1.90849 x 1074
W, 11.0655 3.757313 0.1474950 8.91886 x 1074
w3 30.0426 10.08246 0.37248642 2.00465 x 1073
Wy 50.783 17.24174 0.60284124 2.87998 x 1073
ws 59.9035 21.02683 0.70045560 2.96413 x 1073
W 52.2919 19.39166 0.62020 2.32137 x 1073
wy 34.9026 13.99334 0.43344442 1.43410 x 1073
ws 18.1222 8.06393 0.2443500 7.15049 x 1074
Wo 7.36415 3.75359 0.11260234 2.92059 x 10~
Wio 2.33283 1.41789 427332 x 1072 9.8650 x 1073
wi 0.567501 0.4341132 1.339465 x 1072 277077 x 1073
Wi 0.102858 0.1069601 3.464275 x 1073 6.48527 x 107°
wis 4.05358 x 1073 2.09130 x 102 7.357053 x 1074 1.26372 x 107°
Wia 0 3.17047 x 10~* 1.271140 x 10~* 2.04088 x 1077
Wis 0 3.59091 x 10~* 1.760258 x 1073 2.70805 x 1078
Wie 0 2.85564 x 10° 1.908644 x 107° 2.908829 x 10~°
w17 0 1.41936 x 107° 1.561970 x 1077 2.44768 x 10~10
wis 0 3.30973 x 1078 9.07438 x 107 1.62366 x 10"
Wio 0 0 3.33532 x 1071 5.17973 x 1071
Woo 0 0 5.82950 x 10712 111711 x 10712
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FIG. 17. Coefficients ¢; for the wPLRBM model for XXZ spin
chain across the ergodic MBL crossover.

for L < 3. For larger values L > 3, the asymptotic form (10)
of the number variance is used.

Unfortunately, the dimension D;, grows exponentially with
h which makes the semi-analytic approach feasible only for
h < 6, which incidentally covers all the SRPMs used in (14).
The coefficients which determine P,f (n, s) are gathered in Ta-
bles IV-VII. The Pf :l(rs) distributions are approximated as
Gaussian distributions with standard deviation o = 0.01557
centered around the semianalytically obtained values of
7£=1, which are 0.5155, 0.5206, 0.5231, 0.5246 for h =
2, 3, 4, 5, respectively.

APPENDIX B: WEIGHTED POWER-LAW
RANDOM BANDED MATRICES

The wSRPM describes faithfully level statistics in MBL
transition. However, it provides no information on properties
of eigenstates. One particularly interesting property is multi-
fractality of matrix elements of local operators [63,64] in such
states. Therefore an identification of a random matrix model
which could provide some information about eigenvectors in
MBL transition can be productive.

In this Appendix, we examine an ensemble of power-
law random banded matrices (PLRBM) [24,65] which is the
ensemble of N x N symmetric real matrices with matrix ele-
ments H;; being independent random Gaussian variables with

(Hij) =0 and (H)= (1+ &)1+ i—jl/B)*)".
(B1)
This ensemble interpolates between GOE statistics for B > 1,
w < 1 and PS statistics which arises for u > 1 in N - o0
limit. In the special case of = 1 and large B the model can

P(rs)f e W=15
10': voW=19

E o Ww=21

L * W=25

10% B W=29

F A W=35

L W=4.5

107!

FIG. 18. Distributions P(rs) across the MBL transition (denoted
by markers) with fits from the weighted PLRBM model.
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FIG. 19. Level statistics of XXZ spin chain fitted with wPLRBM
model.

be solved by a mapping onto an effective ¢ model [66]. Nu-
merical calculations of level statistics of the PLRBM model
at the critical line + = 1 were carried out in Refs. [60,67].

We consider PLRBM of size N = 1000, accumulating
10 000 matrices for each set of parameters (, B). Let us note
that the exact values of the (u, B) coefficients are strongly
dependent on size N of matrix from PLRBM. With growing
N aflow of level statistics in this model occurs—points (u, B)
with < 1 correspond to statistics closer and closer to GOE
and analogously—for . > 1 statistics flow towards PS. Cal-
culating the P(rs) distribution for PLRBM model we have ver-
ified that P(rg) remains Gaussian in large region of parameter
space (i, B). Moreover, there exist a region of parameters for
which the level spacing distributions Py (s) decay exponen-
tially and the number variance Ei, g(L) is asymptotically lin-
ear. Therefore a similar extension as in the case of SRPM can
be proposed in which the intersample randomness encoded in
the P(ryg) distribution is mimicked by considering a mixture of
PLRBM with various u; and B; to describe the level statistics
in given point of MBL transition. More precisely, the se-
lected set of PLRBMs consists of models with B; = 0.35 and
varying p; € {0.75 +1i x 0.025};—0,1,....22,24,26,28,32,39,49- The
corresponding weight coefficients are obtained by minimizing
%2 as in (15) with results shown in Fig. 17 and in Fig. 18. The
W = 1.5 was fitted with single PLRBM model with B = 0.35,
u=0.7.
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Let us note that this model gives very good agreement at
the level of tens level spacings as depicted in Fig. 19. Tails of
the level spacing distributions as well as the number variance
obtained from weighted PLRBM model are compatible with
the XXZ spin chain data. Certain deviations are visible in the
spectral compressibility x at larger L.

The PLRBM model was introduced as a model for studies
of critical properties of Anderson localization. In its direct
interpretation, the model (B1) describes a single particle on
one-dimensional sample with disorder and with long-range
hopping—tunneling amplitude decays according to a power
law with distance. Our results show that the PLRBM can be
used also in MBL transition provided the weighted mixture of
matrices is considered.

Such an ensemble needs to be introduced to mimic the
large intersample randomness in the MBL crossover, which
is a specific feature of localization of an interacting system,
whose exponentially large in L Hamiltonian matrix depends
only on L random variables.

One way of interpreting this result is that MBL
can be thought of as a single-particle localization in a
“Fock-space lattice” with complex geometry [68,69] (reflect-
ing the quantum many-body character of the phenomenon).
Another approach is to view wPLRBM as the Hamiltonian
of the system at late stages of diagonalization flow [70-72]
so that the diagonal entries represent random eigenergies
associated with soon-to-be LIOMs and the quickly decaying
off-diagonal elements account for still present interactions
which become weaker and weaker close to the MBL phase.

If the latter is true, then to get the multifractal properties
of matrix elements of local operators [63,64] one has to
know transformation between the o} eigenbasis (in which the
Hamiltonian matrix is straightforwardly computed) and the
basis in which the Hamiltonian becomes the banded matrix.
This would also be the basis in which an interesting relation
between the multifractal dimension D; and the spectral com-
pressibility x holds. This is beyond the scope of the present

paper.
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