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Time dynamics with matrix product states: Many-body localization
transition of large systems revisited
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We compare the accuracy of two prime time evolution algorithms involving matrix product states—tDMRG
(time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The
latter is supposed to be superior within a limited and fixed auxiliary space dimension. Surprisingly, we find that
the performance of algorithms depends on the model considered. In particular, many-body localized systems as
well as the crossover regions between localized and delocalized phases are better described by tDMRG, contrary
to the delocalized regime where TDVP indeed outperforms tDMRG in terms of accuracy and reliability. As an
example, we study many-body localization transition in a large size Heisenberg chain. We discuss drawbacks of
previous estimates [Phys. Rev. B 98, 174202 (2018)] of the critical disorder strength for large systems.
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I. INTRODUCTION

In recent years, matrix product states (MPS) [1,2] have
become major tools in representing quantum states and their
dynamics in many-body one-dimensional systems. For static
calculations, the MPS-based density matrix renormalization
group (DMRG) [3-5] has become the de facto standard for ob-
taining the ground and a few low-lying excited states of many-
body Hamiltonians because of the accuracy and reliability of
the method. In case of time evolution, the breakthrough came
with the development of the time-evolving-block-decimation
(TEBD) algorithm [6,7] and its variant, time-dependent den-
sity matrix renormalization group (tDMRG) [3,8,9], with
similarities and differences between the two approaches being
discussed soon [10]. The simple and transparent algebraic
properties of MPS used in the algorithms shortly led to differ-
ent developments, such as treatment of translationally invari-
ant infinite systems [11,12], matrix product operators (MPO)
technique [13], time-dependent variational principle (TDVP)
scheme with its one-site and two-site versions [14—16], to
name a few. Rapid development in the field has been sum-
marized in seminal reviews [1,17] with leading methods pre-
sented and compared in accuracy and speed on representative
examples (see also [18-21]). The cases studied correspond to
very demanding examples with a rapid entanglement growth
(for initial weakly entangled states), which show that the
TDVP (with the two-site version in the initial phases and
the one-site version afterwards) is less error prone and more
accurate than other available methods, and should be selected
as a method of choice. This seems understandable as the
variational approach should, in most cases, lead to optimal
solutions.
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On the other hand, time dynamics of large systems have
been often addressed with TEBD-based approaches [22-32],
and the MPS-based techniques seem also a natural tool to
consider time dynamics in many-body localization (MBL)
problems, especially as experiments [33] deal with systems
not amenable to exact diagonalization techniques [34—40].
A recent study using TDVP in XXZ spin chain addresses
the MBL transition in detail [41] claiming that the critical
disorder corresponding to MBL transition strongly depends
on the system size. We also analyze this issue in this work,
but first we compare the performance of tDMRG and TDVP
in systems close to a localized regime. Surprisingly, we have
found indications that when nonergodic features in the dy-
namics become pronounced (as at the onset of MBL regime)
the standard, old-fashioned tDMRG may perform very well.
Moreover, results obtained with too small auxiliary space lead
to spurious effects for TDVP that may affect the conclusions
concerning intermediate and long-time dynamics. We believe
this interesting observation calls for a detailed study presented
below. Having an excellent overview of different methods at
hand [17], we only briefly mention our implementations of
algorithms in Sec. II. The core of our results is presented
in Sec. III where we compare the performance of TDVP-
based and TEBD-based schemes with a numerically exact
propagation obtained via Chebyshev expansion of the evo-
Iution operator [42]. Larger system sizes, where no exact
results are available, are discussed in Sec. IV, while in Sec. V
we discuss the difficulties with an estimation of the critical
disorder value for a disordered Heisenberg spin chain from
such time dynamics. We provide a state-of-art estimate for
the critical disorder value for large system sizes. To some
extent, they confirm the existence of MBL transition for large
systems, contrary to a recent analysis [43] that questions the
MBL existence in the thermodynamic limit. We conclude in
Sec. VL.

©2020 American Physical Society



CHANDA, SIERANT, AND ZAKRZEWSKI

PHYSICAL REVIEW B 101, 035148 (2020)

II. NUMERICAL TOOLS

In this section we briefly discuss our implementations of
two MPS-based time-evolution strategies used in this work—
A: time-dependent density matrix renormalization group
(tDMRG) [3,8-10], as a variant of time evolving block dec-
imation (TEBD) technique [1,6,7,17], and B: recently devel-
oped time-dependent variational principle (TDVP) [14-16].

A. tDMRG

Instead of using the more commonly used Suzuki-Trotter
decomposition for implementing tDMRG/TEBD methods,
we use the second-order Sornborger-Stewart [44] decomposi-
tion of the time-evolution operator as first described in [9]. For
a nearest-neighbor many-body Hamiltonian H = Z,L:_11 H;
consisting of L sites, where H; denotes the term on the ith
bond, the decomposition of the small-time-evolution operator
is given by

—iH & —iH & —iH %

—i _iH, &
lHBt% e e 1 .'.elle’ (1)

e e

which incurs error of the order O(8¢°) as similar to the second-
order Suzuki-Trotter one. The term in Eq. (1) is then applied
to a physical state, represented by MPS ansatz, in left-to-
right and right-to-left sweeps exactly as in a two-sitt DMRG
algorithm [9,10]. After each such sweep, the dimension of the
auxiliary space (MPS bond dimension) grows with time, and
if the bond dimension becomes larger than a desired value, say
X, it is truncated by keeping only the x largest singular values
after a renormalization. In our simulations, we set the time
step for tDMRG as §¢ = 0.02 in units of the Hamiltonian.

B. TDVP

In TDVP, the time evolution of a MPS is attained by com-
puting the action of the Hamiltonian only along the tangent
direction to the present variational MPS manifold, described
by the MPS bond dimension y. Mathematically, instead of
solving the time-dependent Schrédinger equation, we solve

dly@))
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where the projector Pyps, projects the action of the Hamilto-
nian H to the tangent plane of the variational MPS manifold
of bond dimension x. In our work, we follow the prescription
described in Refs. [16,17] (see Ref. [15] for an alternative one)
to implement both two-site and one-site versions of TDVP.
Since the two-site version allows us to grow the MPS bond
dimension dynamically during the TDVP sweeps, we employ
this version in the initial stage of the dynamics. As soon as
the bond dimensions in the bulk of the MPS are saturated
to a desired value, say x, we switch to the one-site version,
where dimensions of auxiliary spaces do not change. Such a
hybrid method of time evolution using TDVP has been argued
to incur less errors [17,20]. We use the step-size §t = 0.1 (in
units of the Hamiltonian) for TDVP calculations, however,
since we use properly converged Lanczos exponentiation [45]
in TDVP simulations, smaller step sizes do not affect the
results indicating the convergence with respect to the time step
(see Fig. 1 below).
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FIG. 1. Imbalance I(r) as a function of time in the delocalized
regime W = 3 for the system-size L = 26 obtained with TDVP for
X = 256 and 200 disorder realizations for two different time steps
as indicated in the figure. Only ¢t = 25n, n being a positive integer,
points are plotted for clarity. The differences in the disordered aver-
aged imbalance are of the order of 10~ indicating a full convergence
with the time step taken.

III. MPS TIME EVOLUTION VERSUS “EXACT” RESULTS

As a model to study, we take the Heisenberg spin
chain with random field, often studied in the context of
MBL [46,47]. Explicitly we consider the Hamiltonian

L—-1 L
H=7Y 8 S+ hs, (3)
i=1 i=1

where S; are spin-1/2 degrees of freedom at site i, J is the
spin coupling strength, from now on we set J = 1 fixing the
energy scale, and 4, is the random magnetic field drawn in
our examples from a random uniform distribution in [-W; W]
with W denoting the disorder strength. The Hamiltonian (3)
maps directly to an interacting spinless fermions model mak-
ing it, in principle, accessible in cold atom experiments. Level
statistics analysis of small systems (L < 22) indicates a tran-
sition between extended and MBL regimes at W, = 3.72(6)
(the value extrapolated to the thermodynamic limit via a finite
size analysis of level spacing ratios) [47]. A similar value
is obtained from the entanglement entropy scaling [47]. On
the other hand, the recent study [41] of larger systems (size
L = 100) gives the estimate of the transition at a much larger
value W, & 5.5 on the basis of time dynamics obtained using
TDVP. This obviously contradicts the above mentioned result
based on finite size scaling of data for systems with L < 22
and suggests that either the time dynamics of observables
gives different answer than the analysis of level statistics
and properties of eigenvectors or the results obtained by
TDVP [41] have to be reconsidered.

We analyze a time evolution obtained for the Hamilto-
nian (3) starting from the Néel state with every second spin
pointing up and every second spin down |y) = |1 | --- 1]).
In the fermionic language such a state corresponds to a perfect
density wave with every second site occupied. It is known
that the properties of the system (3) may depend on energy,
leading to the so called mobility edge for the precise location
of the MBL transition [47], such that to probe the system
properties initial states should be adjusted to a particular
realization of disorder to assure probing of the same energy
region. We nevertheless choose a single state mentioned above
to facilitate comparison with [41]. It is worth remembering
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FIG. 2. Imbalance /(¢) as a function of time in the delocalized
regime W = 3 for L = 26 spin chain for different dimensions (x)
of the auxiliary space as indicated in the legend. Here we take the
same 200 disorder realizations for all the techniques. Note that TDVP
consistently leads to faster than exact decay (left), while tDMRG
(right) reveals a false saturation for too small x . The magnitude of the
error A(¢) for the same y is typically smaller for TDVP as shown in
the bottom row where deviations from the exact results are plotted.

that a similar state was also prepared in the experiments [33]
to study MBL dynamics. In all the numerical examples shown,
we disregard two sites on each edge of the chain to minimize
the effect of open boundary conditions. This allows us for a
better comparison of systems of different sizes as discussed in
Sec. V.

Let us commence our numerical studies with moderate
size system L = 26 with open boundary conditions within the
total S, = 0 sector (corresponding to fermionic half-filling).
Its exact evolution using a standard Hamiltonian diagonal-
ization approach would be a formidable task. On the con-
trary, Chebyshev polynomial expansion of the time-evolution
operator [42] used already a few times in the context of
MBL [48-50] allows us to obtain numerically exact time
evolution up to quite long times. Those results serve as bench-
marks against which we compare the performance of tDMRG
and TDVP. For these studies, we consider the same 200
disorder realizations for both methods and monitor the time
dependence of the imbalance, i.e., the normalized difference
between magnetizations of even and odd lattice sites

L
1) =C Y (=Y @)ISEY (), “4)

i=1

where | (¢)) = e F'|1f) and the constant C assures that
1(0) =1 for the initial Néel state. As in experiment [33],
a decay of the imbalance with time indicates a delocalized
regime while its saturation at some finite value points towards
MBL.

Let us now consider how the exact time dynamics of im-
balance is approximated with TDVP and tDMRG algorithms.
Figure 2 shows the exemplary time evolution of imbalance
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FIG. 3. Entanglement entropy growth in time in the middle of
the L = 26 chain for W = 3. Note that consistently TDVP (top left)
follows the exact growth for a slightly longer period while tDMRG
(top right) deviates faster showing a stronger false saturation. The
errors in both cases are shown in the bottom row.

I(t) for W = 3 and L = 26 for different dimensions yx of the
auxiliary space as compared with the “exact” result obtained
by the Chebyshev approach. Interestingly, TDVP leads to a
much faster decay of the imbalance than the exact result,
approaching the exact data from below as the bond dimension
x 1is increased. tDMRG does just the opposite—too small x
values lead to a false saturation of the imbalance. Errors AI(t)
with respect to the exact result are comparable, being a bit
smaller for TDVP.

The superiority of TDVP approach is, however, clearly
visible when the entanglement entropy S(¢) in the middle
of the chain is considered. We trace out half of the chain
(13 sites in this case) and plot the entanglement entropy
growth as a function of time in Fig. 3. While both TDVP
and tDMRG underestimate the entanglement entropy growth,
TDVP follows the exact growth for a slightly longer time,
while tDMRG yields a spurious decrease of the entanglement
entropy at large times.

Let us now come closer to the MBL crossover region by
increasing the disorder amplitude to W = 4. This disorder
value is higher than W, = 3.7, the critical disorder value for
the MBL transition extracted from the finite size analysis
in [47]. The direct inspection of the numerical data as well
as of the errors with respect to exact results indicates that,
surprisingly, tDMRG becomes superior to TDVP showing
consistently smaller errors with respect to the Chebyshev
propagation exact results (see Fig. 4).

A similar conclusion can be reached by analyzing the
entanglement entropy (Fig. 5), where tDMRG shows a con-
sistent behavior, namely, as long as x is sufficient to represent
the dynamics, it gives a correct prediction for the entangle-
ment entropy, and for longer times it always underestimates
the exact value. The behavior of TDVP calculation at long
times, on the contrary, is markedly different. For longer times,
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FIG. 4. Same as in Fig. 2 but for W = 4, where the top panel
shows the dynamics of imbalance for different values of bond
dimension for both TDVP (top left) and tDMRG (top right), and
the bottom panel shows the corresponding errors with respect to the
exact Chebyshev result (TDVP on bottom left, tDMRG on bottom
right). Observe that tDMRG becomes, surprisingly, more accurate
with increasing disorder.

when the bond dimension x is insufficient to represent the
dynamics, TDVP overshoots the entropy growth. In effect,
at a given value of x the entropy coming from TDVP may
overestimate the exact value, a comparison of values obtained
with TDVP for two different x values might be of little help.
For instance, increasing the bond dimension from y = 64
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FIG. 5. The entanglement entropy growth for L =26 and
W = 4 as compared to exact results due to the Chebyshev propaga-
tion (top) and the residuals (bottom). Observe that TDVP overshoots
the growth for large times when x is not sufficient for convergence.
The behavior of tDMRG is more predictable converging smoothly
with increasing .

to x = 128 one could conclude that entanglement entropy
growth is quicker than logarithmic at times ¢ > 300. Only
once the bond dimension is sufficiently large, S(¢) obtained
from TDVP converges monotonically to the exact result.

By comparison, the entropy S(#) in tDMRG underestimates
the exact result in a predictable, monotonic way. Therefore,
our results indicate that the value of S(z) obtained from
tDMRG can be regarded a lower bound for the entanglement
entropy for any time.

We have presented the data for L = 26, the data for L = 20
show a similar behavior with tDMRG becoming a method of
choice for even lower values of the disorder (as the “critical”
region occupies larger interval of disorder amplitudes for a
smaller system).

Some understanding of the different convergence of both
methods may be obtained considering the different ways in
which necessary approximations are made. In tDMRG, when
the wave vector spreads over the allowed Hilbert space in
auxiliary dimension, we move to a higher MPS manifold
(bigger auxiliary space) in a given step. Then we come back
to the assumed size (as determined by x) by truncation and
renormalization of relevant singular values. In this process
contributions leading to the higher auxiliary spaces are re-
moved, and “less entangled” and more localized components
of the wave packet are relatively better reproduced, as the
relevant singular values are much more skewed towards higher
values. In the same spirit, it was shown in a Bose-Hubbard
case study [28] that a long time (beyond any reasonable
timescale for a full convergence) evolution in tDMRG allows
one to extract localized excited eigenstates. On the other
hand, in one-site TDVP (which is used when the maximum
allowed size of the auxiliary space is achieved), we move
within the same MPS manifold by only considering the action
of the Hamiltonian projected into the tangent space of the
MPS manifold, and the source of error comes from such
a projection. In a typical situation, for clean or delocalized
systems, this strategy also leads to eventual underestimation
of entanglement entropy. However, the outcome is much
different for strongly disordered systems, as the unconverged
data look spuriously “more delocalized,” and surprisingly, the
entanglement entropy is overestimated at long times if x is
not sufficient to describe the dynamics. This overestimation is
counterintuitive as smaller values of x should produce lower
entanglement entropy. Such observations can motivate further
studies regarding time-evolution algorithms using tensor net-
works in localized systems.

IV. TDMRG VERSUS TDVP FOR LARGE SYSTEMS

As a standard “large” system we consider the same model
[as given in Eq. (3)] with L = 50 sites with open boundary
conditions. This is a typical system size met in cold atom
experiments [33]. The previous TDVP based analysis [41] has
concentrated on L = 100 showing that L = 100 and L = 50
do not differ substantially. Still L = 50 is computationally less
expensive and, on the other hand, it seems sufficiently large
to ensure that boundary effects are small. We consider 200
realizations of disorder in our analysis.

Let us consider again the W = 3 case first. For this disorder
value and due to the large size, we expect the system to be
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FIG. 6. Time evolution of the imbalance for disorder strength
W =3 (on the delocalized side) for different dimensions of the
auxiliary Hilbert space x as indicated in the figure. For this disorder
value even x = 512 is not sufficient for the convergence up to times
t = 350. The top five curves correspond to tDMRG showing an
apparent saturation of the imbalance, diminishing with increasing
x. The five bottom curves correspond to TDVP with an opposite
behavior, the bigger the x the slower the decay. Red lines without
symbols correspond to extrapolations to x — oo limit, see text. The
same 200 disorder realizations are used for each curve.

on the delocalized side of the transition with TDVP working
significantly better than tDMRG. The results of the simula-
tions for the dynamics of imbalance I(#) using both TDVP and
tDMRG are shown in Fig. 6 again for the antiferromagnetic
Néel initial state. First, we observe a similar behavior as for
smaller system sizes. Too small x leads to a false saturation
of the imbalance for tDMRG, with increasing x the imbalance
decays for longer times. TDVP shows an opposite effect, too
fast decay for small . The exact result is expected somewhere
between the tDMRG and TDVP curves. Observe that TDVP
seems to be almost converged when comparing y = 384 and
x = 512 curves while the corresponding tDMRG curves show
a bigger discrepancy. Both methods should converge to the
same result, but looking at the curves it seems apparent that
a much larger bond dimension than used in the simulations is
needed to sufficiently explore the Hilbert space and get a truly
converged result even for TDVP.

This aim may be reached by making an analysis of the
result obtained for different x in an attempt to extrapolate
the results in the limit x — oo. Inspired by standard finite-
size extrapolation, we present the data for chosen instances
of time as a function of 1/ (see Fig. 7). Fitting a simple
third-order polynomial leads to a surprisingly nice agreement
between the two approaches. For longer times the agreement
deteriorates as results for tDMRG and TDVP differ too much
for the simple extrapolation procedure to hold. The results for
such extrapolations are shown in Fig. 6 as red lines without
symbols.

The corresponding growth of entanglement entropy S(t)
in the middle of the chain (computed after tracing out half
of the chain) in time is depicted in Fig. 8. Observe a clear
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FIG. 7. Extrapolation of the imbalance for W =3 to x — oo
by fitting a third-order polynomial of 1/x to the data obtained for
selected times and same values of y as presented in Fig. 6. Fitting
errors are less than 10719,

saturation of entropy for tDMRG when the chosen x values
are insufficient to represent the dynamics, and the almost
converged entropy growth for TDVP, where y = 512 data
are reasonably fitted with a power-law growth S(¢) oc 1%2° in
accordance with the expectation that the entanglement entropy
growth is faster than logarithmic on the delocalized side of the
CIOSSOVETr.

Let us consider slightly bigger disorder W = 4. The corre-
sponding evolution of the imbalance is shown in Fig. 9 for
different x values both for TDVP and tDMRG using 200
realizations of disorder. While differences between various x
values indicate smaller deviations in imbalance for tDMRG,
TDVP with x = 384 matches almost exactly the TDVP result
for x =512 uptor = 350.

As in the case of W = 3, we may attempt extrapolation
to larger y values—see Fig. 10 for examples of the pro-
cedure while the result of the extrapolation of time depen-
dence are presented in Fig. 9. Again the agreement is quite
nice. Observe a nonmonotonous decrease of estimated I(¢)
with time, which reflects time fluctuations of imbalance—

TDVP, W =3 tDMRG, W =3
281 X =512 L= x=512
— x =38 —_— =384
—_— =256 —_— =256
2471 X =128 Y =128
X =064 x =64

10 20 50 100 200 350 10 20 50 100 200 350

FIG. 8. The entanglement entropy growth in the middle of the
chain for L = 50 and W = 3 corresponding to the imbalance de-
picted in Fig. 6 for TDVP (top panel) and tDMRG (bottom panel).
For entanglement entropy, an increase in x lead to higher values, and
the differences between both numerical approaches are significant
with TDVP seemingly being better converged.
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FIG. 9. Time dependence of the imbalance for W = 4 and dif-
ferent values of x. The top four curves correspond to tDMRG
calculation, while the bottom curves for TDVP as indicated in the
figure. As in Fig. 6 curves without symbols represent the result of
X — 00 extrapolation.

compare Fig. 9—related to a small number of disorder realiza-
tions. The corresponding entropy growth, this time relative to
x = 512, data are represented in Fig. 11. Although the entan-
glement entropy error is much smaller for TDVP showing an
apparent better convergence, the curves are not monotoni-
cally decreasing with time which strongly suggests that the
entropy obtained from TDVP will ultimately overestimate
(for t > 350) the actual value if x is not sufficient, a behavior
similar to that observed for the L = 26 case mentioned in the
previous section.

Finally, let us consider even stronger W =5 disorder,
Fig. 12. Now the convergence of tDMRG is clearly much
faster than that of TDVP. All curves are markedly more hor-
izontal indicating a much slower (if any) decay. Note that to
facilitate comparison of different x values only equally spaced
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0.420 & TDVP. ¢ =300 ® IDMRGU=S00 e A
___________ -
0418t =T A
K et e -
0.416 ,.:-_‘_:::: —.—,“:::_:;::*-_
= —-‘==g: e S o
= 044t .- Rt Sty
,4__*_"&‘"* -‘.n\: ~~~~~~
0.412 Tl BN
g -y
0.410 BRI
od08+ T
0406, ‘ ‘ ‘ ‘ ‘ ‘ .
0.000  0.002 0.004 0.006 0.008 0.010 0.012 0014 0.016
1/x

FIG. 10. Extrapolation of the imbalance for W =4 to y — oo
by fitting a third-order polynomial of 1/x to the data obtained for
selected times and different values of x € [64, 128, 256, 384, 512].
Fitting errors are less than 1077,
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FIG. 11. The entanglement entropy error for L = 50 and W = 4
corresponding to imbalance depicted in Fig. 9 for TDVP (top panel)
and tDMRG (bottom panel). We plot the difference between the half-
chain entanglement entropy for a given x (as indicated in the figure)
and the corresponding entropy obtained for y = 512. The difference
is negligible for TDVP suggesting a convergence of TDVP results in
the time window indicated.

point in times (every ¢t = 25n with n being a positive integer)
are plotted to remove rapid oscillations with a magnitude
exceeding the difference between different signals.

V. ANALYSIS OF THE CROSSOVER AND ITS PROPERTIES

The convergence examples studied in the previous section
show significant fluctuations due to a relatively small number
N = 200 of realizations of disorder. Still they are sufficient to
draw some preliminary conclusions. First, in the interesting
interval of disorder values, x = 64 or even x = 128, as used,
e.g., in [41], lead to unconverged results affecting the shape
and the decay of imbalance curves. Only for W > 4.5 such
small values of y seem to produce results one could rely
on. We decided to compromise on x = 384 data as a proper
choice for estimating the imbalance decay, for which we have
reasonably reliable data up to ¢ = 500. Still, we may not be, as
exemplified in detail above, convinced about the convergence
for W < 4 even for shorter times. For better statistics from
now on we use 400 realizations of disorder for L = 50, unless
otherwise stated.

As discussed earlier [51,52], it is suggested that the imbal-
ance decays as a power law on a delocalized side of ergodic-
MBL crossover. However, there exists, as far as we know, no
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FIG. 12. Same as Fig. 9 but for W = 5. To facilitate comparison
with earlier W = 4 case—compare Fig. 9—the similar vertical scale
is used. Clearly the convergence is faster for tDMRG simulations.
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FIG. 13. The imbalance for 200 realizations of disorder with
W = 3.5 for L = 26 as obtained from time evolution by Chebyshev
expansion. The main panel shows the decay for long times, up to
t = 1000. Both the power law and logarithmic decay match the data
with a comparable precision. Exponential decay is by comparison
ruled out. The inset shows the data for smaller times where prominent
oscillations may affect the fit.

real theoretical foundation for this conjecture. Small system
sizes at short times (up to t = 100) were fitted in [51] by
a nine parameter formula matching also rapid oscillations at
very short times with a power-law component, The exper-
imental data [52] were fitted by the power-law decay t—*
as well as (see the Supplemental Material for [52]) by the
exponential decay. In the previous study [41] power-law fits
int € [50, 100] interval were analyzed.

The difficulty encountered by fitting the data is exemplified
in Fig. 13. To leave out the convergence problems for a
moment, we present the exact data for L = 26 with 200
disorder realizations. The inset shows the fits of different time
dependencies of the decay in the ¢ € [50, 100] interval. We
use the following fitting formulas:

fe(t) = a) exp(—ayt) exponential fit,
fp(t) = al/tu2

fit) =a; +axIn(z)

power-law fit,

logarithmic fit.

Bearing in mind the existence of significant oscillations in
the data for short times, all three functional dependencies
assumed (logarithmic, exponential, and power law) fit the
average decay reasonably well. The main panel shows the
decay on a large timescale (available for Chebyshev propa-
gation) where clearly the exponential decay is ruled out but
both power law and logarithmic fits are practically indis-
tinguishable. This clearly shows the ambiguity in extracting
reasonable critical disorder value by curve fitting in such small
time windows (even when ¢ is considered up to 1000).

Such large times are practically unreachable with TDVP
and tTDMRG due to convergence problems as shown in the
previous section. Therefore, we have to make a reasonable
compromise, and we settle for the ¢ € [100, 200] interval.
This increases twice the time interval as compared to the [41]
study, makes the role of oscillations weaker (they obviously
affect the fit as the maxima and minima shift with the

tDMRG
0.06T
N
\
\Y

5.0 3.0 35 10 15
W W

5.0

FIG. 14. The power-law (t=?) B coefficient obtained from fits
of imbalance obtained from both TDVP and tDMRG in the ¢ €
[100, 200] interval for L = 26 left and L = 50 right for x = 384
for 200 disorder realizations. The error bars correspond to 2o error
obtained from the statistical bootstrapping procedure. The exact data
from Chebyshev time evolution lie within a shaded area for L = 26.
Results of both methods practically coincide for W > 4 for both
L =26 and L = 50.

disorder strength), and produces almost satisfactory conver-
gence in tDMRG and TDVP simulations. From now on we
use the power-law fit for a better comparison with earlier
works.

In fact, the discrepancies observed from not fully con-
verged tDMRG and TDVP data may be quite informative.
MBL is known to be characterized by area-law-entangled
eigenvectors [53] and slow logarithmic growth of the entan-
glement entropy from the initial separable state [25,54]. One
could envision that this property could be used in our simula-
tions, but a casual glance at examples given in the previous
section, shows that entanglement entropy converges slowly
with x, moreover making a distinction between logarithmic
and power-law growth is difficult on short time intervals (as
for imbalance). Still in MBL regime we expect a better, faster
convergence with increasing x as well as smaller differences
between TDVP and tDMRG results.

We now turn to analysis of imbalance decay. Comparison
of power-law fits for TDVP and tDMRG are shown in Fig. 14
for 200 disorder realizations. Shaded regions are discrepan-
cies appearing in the delocalized regime. The data for L = 26
are of course more converged than those for L = 50 with
the same assumed bond dimension xy = 384. However, for
W > 4, the discrepancies between fits to TDVP and tDMRG
data are independent of the system size. These data suggest
that a qualitative change in the behavior of the system occurs
around W ~ 4.

This is further supported by Fig. 15 showing results of the
fits where only TDVP data are taken into account. Considering
only 400 realizations of disorder (dictated by the relatively
large x value in simulations) we deal with quite a noisy data
as shown in the previous section. We take g =0.02 as a
threshold value that describes the distinguishability between
the power-law decay and the stationary long time behavior.
This threshold value roughly corresponds to 4o errors of our
data by the statistical bootstrapping procedure at W = 4 for
L = 50, and is also consistent with the W, estimate via level-
spacing distribution for smaller systems (L = 20). A small
shift of the fitted curves with the system size is observed, but
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FIG. 15. The power-law (t=#) B coefficient obtained from fits of
TDVP data in the ¢ € [100, 200] interval for y = 384 and different
system sizes. The exact data from the Chebyshev time evolution are
given for L =26 in t € [100, 500]. The error bars corresponds to
20 error obtained from the statistical bootstrapping procedure. The
dashed line at 8 = 0.02 is our assumed confidence level.

nevertheless, the curves for L = 50 and L = 200 practically
coincide at larger disorder strengths yielding the estimate of
the critical disorder value around W ~ 4.2. For comparison,
we also fit L = 26 data obtained from the Chebyshev method
in a bigger time window ¢ € [100, 500], as a convergence
problem for longer time can be ruled out in this situation.
Like L = 50 and 200, the L = 26 curve also shows a quali-
tative change around W ~ 4. Both the weak dependence on
the system size and the value of the critical disorder estimate
differ significantly from the conclusions of [41]. The main
difference in the value of critical disorder strength, however,
originates from the different “f cutoff” assumed to be at
B ~ 0.01 in [41], which does actually shift the apparent value
of W, close to 5 even for smaller system sizes like L = 26.
We also note that the critical disorder value W ~ 4.2 obtained
in our analysis is in good correspondence with results of [55]
that suggest critical disorder strength to be about W = 4.5(1)
in the middle of the spectrum.
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Taking all the arguments, and in particular the certain arbi-
trariness of the threshold B choice, we give a rather large error
for our estimate of the critical disorder as W, = 4.2 + 0.3.

Let us come back to the analysis of the imbalance decay
and make a flowing-8 analysis of the decay following the
procedure described in [56] for a quasiperiodic disorder.
Explicitly, first we assume a window of times 7 € [30, 500].
Then, for each time ¢, we fit /() with t=#® where the

imbalance data are weighted according to a Gaussian of width
(l T )

6, ~exp[— ], where & is chosen to be sufficiently large
to remove oscﬂlatory (as well as fluctuating) behavior of the
data. In our case, we choose & = 60. In the localized regime,
where the imbalance should saturate eventually, §(¢) should
show a decrement with ¢ in a moderate time window. In
Fig. 16 we show the time dependence of S(¢) derived from
the TDVP data of L = 50 for different disorder strengths
and different values of x. Here we used 800 realizations of
disorder to minimize the statistical errors in estimating S(t).
We observe a strong dependence on x indicating that data with
low x should be taken with caution. In these regards, we also
perform x — oo extrapolation to estimate the “converged”
behavior of B(¢) at infinite bond dimension. For W = 3, the
flowing B increases with time indicating that the decay of
imbalance is faster than a power law. For W = 4.5, while
small x suggests delocalization, sufficiently large x values
indicate that W = 4.5 is above W,, as S(¢) starts to decrease
with time. Such decrement of B(¢) is more prominent for
W = 5. This analysis of flowing g is indeed in parity with
the earlier estimation of critical W, = 4.2 + 0.3.

In [41] the critical disorder value was compared with
W, ~ 3.7 found in [47] on the basis of finite size scaling
of the average level spacing ratio 7 obtained for system
sizes L = 14, ...,22. The analysis of [47] was conducted
for a system with periodic boundary conditions while time
evolution studies are carried out with open boundary condi-
tions (OBC). Surprisingly, the choice of boundary conditions
strongly affects the critical disorder strength value obtained
from finite size scaling of data from level statistics. To
demonstrate this, we find 500 eigenvalues E; from the middle
of spectrum of system with sizes L = 14, 16, 18,20 with
shift-and- 1nvert techm(% e [57], calculate the level spacing

mm 22— 1 i+1— E
ratios r; = Eivr =iy and average it within a given
I = max(Epo—EirrEin—Ei } ; g g
256 -_—- =384 — o — OO
W =45 ) W =5.0
0.045 - 0.025 =3
L ,/
. 4
0.040 ’ 0.0201 R4
0.035 J ,
0.030 ’ _0.0151 e
/ = 7
0.025 s’ S -
. 0.010 SRR
0.020 - —— Z\N
= oy -
0.015 = 0.0051
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FIG. 16. Flowing power-law exponent §(t) as derived for different disorder values (indicated in the figure) from the TDVP data for L = 50
and 800 disorder realizations. Here we also extrapolate the data to x — oo to estimate the behavior of 8(¢) at infinite bond dimension. Observe
a strong dependence on x indicating that predictions for small x are misleading. For W = 4.5 a decrement in §(¢) values indicating localization
is observed. Shaded areas indicate 2o errors of x = 384 data from the bootstrapping procedure.
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FIG. 17. The average level spacing ratio 7 as a function of
disorder strength W for various system sizes L with open boundary
conditions. The inset shows collapse of the data upon rescaling of
disorder strength according to W — (W — W¢)L!". The obtained
value of critical disorder strength W = 3.29(9) is markedly smaller
than the value found in [47] for the system with periodic boundary
conditions.

disorder sample and, subsequently, over 2000 (500) disorder
realization for L = 14, 16, 18 (L = 20) to obtain the average
level spacing ratio 7. The results are shown in Fig. 17. A clear
crossover between 7 = 0.5307(1) in the ergodic regime and
7 =0.3863(1) in the MBL regime is visible. Rescaling the
disorder strength according to W — (W — W)L/ leads to a
collapse of the data yielding value of critical disorder strength
W, = 3.29(9) [and v = 0.92(5)]. Discrepancy of the critical
value of disorder strength for system with OBC and the result
of [47] for periodic boundary conditions demonstrates the
significance of the edges of the system which should be neg-
ligible if W, obtained in this way was truly a thermodynamic
limit quantity.

Moreover, there is an obvious disagreement between W, =
3.29(9) obtained from finite-size scaling of #(W) and from
time evolution of imbalance W & 4.2. We believe that there
is no reason to expect the critical disorder estimates obtained
by these two approaches to coincide. The level spacing ratio
r, contains information about properties of the system at
an energy scale of single level spacing. The corresponding
timescale (Heisenberg time) is exponentially large in system
size L. Features of level statistics at scales of few and many-
level spacings [58] correspond to shorter time scales and can
be observed in time dynamics [59]. Nevertheless, the involved
timescales are still exponentially large in system size L. How-
ever, the analysis of time dependence of imbalance necessarily
addresses finite time intervals comparable to experiments in
cold atoms and long timescales are not reachable by present
state-of-the-art tools used by us. From that perspective, the
time evolution study of ergodic-MBL transition, even of very

large systems, may only suggest ergodic or localized behavior
at some intermediate disorder strengths, whereas the precise
location of the transition point between the two phases can be
pinpointed only in the limit of infinite times.

VI. CONCLUSIONS OUTLOOKS

We have discussed two distinct but related issues. On the
technical side, we compare the performance of two popu-
lar schemes for simulation of time evolution in large one-
dimensional disordered systems—tDMRG (as a variant of
TEBD) and TDVP. While TDVP outperforms tDMRG for
delocalized systems, in the crossover region between the
delocalized and MBL side, tDMRG may be slightly bet-
ter. In particular, errors in the entanglement entropy accu-
mulate in tDMRG in a controllable and predictable way,
while TDVP shows counterintuitive behavior of overshoot-
ing the actual value for smaller auxiliary spaces. Inter-
estingly, studies of imbalance indicate that tDMRG/TDVP
overestimates/underestimates the imbalance at longer times,
so joining the information from both algorithms allows us to
estimate the proper imbalance behavior as a function of time.

Our study, extended to longer times, larger system, and,
importantly, much larger y, show that at the assumed level of
accuracy, the dependence of disordered Heisenberg spin chain
on the system size is rather weak, contrary to earlier find-
ings [41]. While we provide arguments towards the estimate
of the critical disorder value at W, ~ 4.2, we must stress that
this estimate is limited to the time interval (up to t = 200, or
t = 500 for flowing-8 analysis)—extending this time to much
larger values is beyond the current computational power—
except for systems very deep in the MBL regime. With
this restriction, our study, especially the flowing-g analysis,
strongly suggest a saturation of the imbalance in the long time
limit for large system sizes contradicting the claims of [43]
which questions the MBL existence in the thermodynamic
limit. For further discussions regarding this interesting issue
see [60-62].
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