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Color centers in diamond for intra- and extra-cellular
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: * To advance both fundamental life sciences

| measuring electromagnetic fields, temperature, and pH at nanometer precision. This multimodal quantum biosensor
o= Integrates super-resolution bioimaging capabilities and leverages nitrogen-vacancy (NV) and silicon-vacancy (SiV) color

° centers embedded in biocompatible diamond single-crystal nanoneedles.

and practical medicine, IS developing a tool capable of

Objectives

O1. CVD synthesis of diamond nanoneedles (80-120 nm length, 20-25 nm base, 3-5 nm apex) with >5 NV centers near the surface and >5 SiV
centers >10 nm from NVs for multimodal sensing.
O2. Biofunctionalization enabling safe endocytosis or membrane anchoring, compatible with quantum sensing.

O3. Diamond-PAINT/SOFI microscopy methods for multimodal sensing (fields, temperature, pH, ROS) and <20 nm resolution imaging.
O4. Automated calibration methods and software for super-resolution imaging with nanoneedles.

O5. Proof-of-concept demonstration of multimodal sensing and imaging in living cells or membranes.

O6. Exploitation plan covering DNN synthesis, biofunctionalization, sensors, and imaging.

Diamond nanoneedles synthesis

Quantum sensing and applications

d A robust and scalable synthesis technology has been
developed for sub-200 nm diamond needles;

U To boost yield, a PECVD growth strategy enabling the
formation of multiple nanoneedle layers in a single process is
being developed.
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 To optimize sensing performance,
spatial engineering of color centers is
being developed to form SiV™ at the
tip and NV~ at the base.
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SEM images of a single-crystal diamond needle (SCDN) (a) oxidized at 650 °C for 3 h and
its tip (b) used for PL mapping (c), spectroscopy (d), and autocorrelation measurements
(e, ). PL map and g(2) data in (e) were acquired with a 560 nm long-pass filter, and in (f)
with a 700/50 nm band-pass filter. The confocal spot position during autocorrelation is
marked with red arrows in (c); the lowest g(2) points are highlighted in red. Excitation

wavelength: 532 nm.
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1 Temperature sensing:
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was demonstrated in macrophages via
ODMR of NV~ centers. )
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4 pH sensing: Extended tracking of diffusing FNDs via ABEL trap; NV spin
states probed through fluorescence lifetime.
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 Radical sensing: Real-time detection of intra- 120
cellular radicals was achieved using NV~ '
fluorescence. Changes in radical levels under ]
ligand stimulation (SST, TPP, TAT) were 8

monitored via ODMR microscopy in single . — =~
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spinning tip

- | 4 Electrospinning producing:
\ ¢ Degradable polymer nanofibers
‘ S " embedded with a vector nanosystem —
e polymer-coated FNDs optimized for
e the binding of siRNA.

PVA — poly(vinyl alcohol)
PCL — poly(caprolactone)
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