QuaSeRT
Optomechanical QUAntum SEnsors at Room Temperature
Francesco Marin

https://quasert.wordpress.com/
SUCCESS STORY (highlights)

CHALLENGE: beating thermal decoherence quantum systems at room temperature

STRATEGY: 4 different nano- and micro-optomechanical platforms

OUTCOMES:

Delic et al., Science 367, 892 (2020)

Ranfagni et al., Nat. Phys. 17, 1120 (2021)
IMPACT (RRI aspects)

OPEN SCIENCE: promoting transparency and reproducibility of research, increasing and widening the diffusion of knowledge

- > 36 publications, most with Open Access (gold or green)
- > 40 communications in international conferences and workshops
- 3 network meetings with external guests
- Preprints and data in open repositories (arXiv, HAL, Zenodo)

PUBLIC ENGAGEMENT:

Participation to the Long Night of Science with popularization conferences and experimental demonstrators

[Project web site](https://quasert.wordpress.com/)
IMPACT (potential users)

Fast optomechanical measurement of single nanoparticles and droplets

Sbarra et al., Nano Lett. 22, 710 (2022)

APPLICATIONS: aerosol sensing, biosensing...
INDUSTRY BRANCHES: biomedical, security, automobile...
END USERS: health care operators, health surveillance agencies...
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 731473.