QuICHE
Quantum Information and Communication with High-Dimensional Encoding

Chiara Macchiavello, Univ. Pavia & INFN, Italy

on behalf of

Dagmar Bruss, University of Dusseldorf, Germany
Michał Karpiński, University of Warsaw, Poland
Mikhail Kolobov, CNRS Lille, France
Christine Silberhorn, University of Paderborn, Germany
Ian Walmsley, Imperial College London, UK

Call 2019
PROJECT PROGRESS (highlights)

Main achievements:

• **High-dimensional witnesses and entanglement verification.**
 Construction of a new Schmidt-number witness requiring fewer measurements than other existing witnesses for fidelity evaluation.

• **High-dimensional Quantum Key Distribution.**
 Analytical and numerical results for asymptotic secret key rates in high dimensions, showing that a slight dimension enhancement (i.e. $d = 3$) significantly improves the asymptotic secret key rate and the error tolerance.

• **Quantum temporal imaging.**
 Development of theory of noiseless compression and stretching of temporal waveforms carrying high-dimensional quantum encoding

 ➢ transformation of quantum intensity correlations of light, observed by direct photodetection, by a single-lens temporal imaging scheme
 ➢ proof that such an imaging scheme performs noiseless stretching or contraction of the second-order intensity correlation function without deteriorating its nonclassical features: antibunching and sub-Poissonian statistics of the photons.
Main achievements:

- **Storage and retrieval of different temporal modes.**
 Experimental demonstration of storage & retrieval of a number of different temporal modes from a quantum memory, observing that the memory works as a single-temporal-mode filter – by using different temporal mode pulses for the control field – and that the memory can be used for bandwidth compression.

- **Multi-output quantum pulse gate**
 Development and realization of a multi output quantum pulse gate (mQPG), which serves as a decoder for high-dimensional QKD. The device is compatible with single-photon level inputs at telecommunication wavelengths and can features five outputs. A complete detector tomography reveals intrinsic fidelities in excess of 95%.

- **Single-photon detection**
 Achievement of single-photon detection with compatible spectral and temporal resolutions, where both the temporal envelope and spectral power density of an optical pulse can be experimentally probed.
IMPACT (RRI aspects)

GENDER: particular attention to gender balance (50% female PIs and 33% project contracts)

SCIENCE EDUCATION: promotion & involvement in activities for spreading QT concepts & education to high school students and teachers (e.g. European Quantum Week)

PUBLIC ENGAGEMENT: Active collaboration between theoretical and experimental physicists.
Active widening country involvement in the project.
Focus on real-world applications (QKD and q. networks).
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 731473.