TheBlinQC
Theory-Blind Quantum Control
Florian Mintert

Call 2017
SUCCESS STORY (highlights)

CHALLENGE
qtech applications require control
conventional: inefficient/unreliable numerical simulations

SOLUTION
learn how to control in the experiment

PLANNED AND SURPRISING/UNPLANNED OUTCOMES
control with very noisy data (Sauvage et al., PRX Quantum 1, 20322 (2020))
quantum limited cooling of nano-particle (Magini et al., Nature 595, 373 (2021))
IMPACT (RRI aspects)

SCIENCE EDUCATION
bridge between theory and experiment: theorists can interact with experiment

PUBLIC ENGAGEMENT
Hands-on Radiation pressure demonstrator -- Long night of science Vienna, Center of Science Activities in Graz
IMPACT (potential users)

INDUSTRY BRANCH
quantum devices (current NISQ)

APPLICATIONS
quantum optimization, e.g. VQE
calibration of quantum device

END USERS
user, developer and manufacturer of quantum devices
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 731473.