Topoquant

2D hybrid materials as a platform for topological quantum computing

Zijin Lei

Ensslin Group, ETH Zurich
High-quality InSb Quantum Well Devices

MBE Growth: high-quality semiconductor materials

Nano Fabrication for Quantum Devices

Low-temperature Quantum Transport Measurements

Understanding of Quantum Properties

n-type InSb, 2D and 1D

![Graphs showing electrical properties of n-type InSb.](image)

p- and n-type InSb in a Single Device

![Graphs showing electrical properties of p- and n-type InSb.](image)

- Z. Lei *et al.*, arXiv:2208.10427
Epitaxial InAs/Al Heterostructures

2D InAs/Al for Topological Quantum Computing

Material growth: Wegscheider Group, ETH Zurich

Topological Quantum Computing

Dephasing[1]

Continuous readout of QD charge to detect qubit state

Qubit readout[2]

Dephasing rate as signature of Majorana bound states

Improved platform[3]

Topological phase due to phase bias w/o magnetic field

Qubit lifetime

QD charge

Close interaction between Ph.D. students supported by the Quantera project
Quantera project was crucial for the success of this research direction

THANK YOU
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 731473.