ORQUID

ORganic QUantum Integrated Devices

Our society relies on secure communication, powerful computers and precise sensors. Basic science has shown that huge improvements in these capabilities are possible if we can utilise many single quantum objects working in concert. We can then see how to store and process huge amounts of information in a fully secure way and how to make exquisitely sensitive measurements of fields and forces.

Specific types of quanta – photons, electrons, phonons – already bring new specific functions, but to realise the full promise of quantum technologies, it will be necessary to interface these systems with each other in a way that is practical and scalable. This is the focus of our programme. ORQUID will explore the exciting new possibility of using single organic molecules as the interface between these three quanta so that they can work together as required. First, single molecules will interact with light in waveguides and cavities to generate and detect single photons, providing immediate impact in quantum

photonics. Second, single molecules will detect single moving charges in nano-electronic circuits to provide quantum coherent information exchange between these charges and the external world. Third, molecules embedded in nanomechanical devices and two-dimensional materials will measure nanoscale forces and displacements, which are key to developing mechanical quantum systems and understanding nanomachinery. By developing these three interfaces on a common platform, we will create a versatile hybrid system. By allowing the user to draw simultaneously on the most sensitive quantum aspects of light, chargé and sound, we anticipate that this hybrid will be a major advance in the technology of quantum devices.

CONSORTIUM

  • Coordinator: Costanza Toninelli (Consiglio Nazionale delle Ricerche, IT)
  • Wolfram Pernice (Westfaelische Wilhelms-Universitaet Muenster, DE)
  • Frank Koppens (The Institute of Photonic Sciences, ES)
  • André Gourdon (Centre National de la Recherche Scientifique, FR)
  • Michel Orrit (Universiteit Leiden , NL)
  • Boleslaw Kozankiewicz (Institute of Physics, Polish Academy of Science, PL)
  • Edward Hinds (Imperial College of Science Technology and Medicine, UK)

MID-TERM REPORTING: Presentation of the mid-term results of the project

PROJECT WEBSITE: http://orquid.lens.unifi.it

Call year

Call 2017

Call topic

Q-information sciences

Area of research

Quantum information sciences

Start date

February 2018

Duration

36 (+13) months

Funding support

€ 1 722 476,70

Project status

In Progress