RouTe

RouTe Towards Room Temperature Quantum Technologies The goal of RouTe is to lay the foundations for a quantum technology that can operate at room temperature, thus taking a first major leap towards exploiting fundamental quantum phenomena in light-matter interaction for real-world applications. The enabling physical systems are organic materials that display quantum properties even at…

Details

QuompleX

QuompleX Quantum Information Processing with Complex Media The world’s most advanced quantum technologies rely for a large part on the control and manipulation of quantum states of light. From entanglement swapping to Boson sampling, linear optical devices such as beam splitters and integrated photonic circuits are essential for accomplishing key tasks in quantum communication and…

Details

QuaSeRT

QuaSeRT Optomechanical quantum sensors at room temperature The research in cavity optomechanics has recently achieved a major breakthrough: the first observation of quantum phenomena in cryogenic, optically cooled mechanical resonators (i.e., actually in macroscopic objects), as well as in the electromagnetic field interacting with such resonators. These results open the way to the exploitation of…

Details

QUANTOX

QUANTOX QUANtum Technologies with 2D-OXides The development of “fault tolerant” quantum computation, unaffected by noise and decoherence, is one of the fundamental challenges in quantum technology. One of the approaches currently followed is the realization of “topologically protected” qubits which make use of quantum systems characterized by a degenerate ground state composed by collective composite…

Details

QuantAlgo

QuantAlgo Quantum algorithms and applications During the 20th century, the development of information technologies had a huge impact not only on science but also on society as a whole. This unprecedented revolution revealed a need to improve the speed and efficiency of data processing, as well as to strive for better security and privacy. One…

Details

QTFLAG

QTFLAG Quantum Technologies For LAttice Gauge theories In the past decades, quantum technologies have been fast developing from proof-of-principle experiments to ready-to-the-market solutions; with applications in many different fields ranging from quantum sensing, metrology, and communication to quantum simulations. Recently, the study of gauge theories has been recognized as an unexpected field of application of…

Details

QCDA

QCDA Quantum Code Design and Architecture General purpose quantum computers must follow a fault-tolerant design to prevent ubiquitous decoherence processes from corrupting computations. All approaches to fault-tolerance demand extra physical hardware to perform a quantum computation. Kitaev’s surface, or toric,code is a popular idea that has captured the hearts and minds of many hardware developers,…

Details

Q-Clocks

Q-Clocks Cavity-Enhanced Quantum Optical Clocks The “Atomic Quantum Clock” is a milestone of the European Quantum Technologies Timeline. Q-Clocks seeks to establish a new frontier in the quantum measurement of time by joining state-of-the-art optical lattice clocks and the quantized electromagnetic field provided by an optical cavity. The goal of the project is to apply…

Details

Q_Magine

Q_Magine Scalable Electrically Read Diamond Spin Qubit Technology for Single Molecule Quantum Imagers Ground-breaking progress in quantum metrology using NV diamond single spin qubits operating at room temperature led to imaging of single molecules carrying nuclear (1) or electron spin (2) and ultra-weak magnetic and electric fields (3)(4)(5). It is further anticipated that diamond quantum…

Details

SUMO

SUMO Scaling Up quantum computation with MOlecular spins SUMO aims to set the basis of a new architecture for quantum computation and simulation, in which information is encoded in molecular spin qubits that are read-out and communicate by coupling to a superconducting resonator. This technology has a high potential for robust scalability, based on the…

Details